九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

(浙江專版)2018年高考數(shù)學 第1部分 重點強化專題 專題6 函數(shù)與導(dǎo)數(shù) 突破點16 導(dǎo)數(shù)的應(yīng)用教學案

上傳人:彩*** 文檔編號:105727017 上傳時間:2022-06-12 格式:DOC 頁數(shù):13 大?。?64.50KB
收藏 版權(quán)申訴 舉報 下載
(浙江專版)2018年高考數(shù)學 第1部分 重點強化專題 專題6 函數(shù)與導(dǎo)數(shù) 突破點16 導(dǎo)數(shù)的應(yīng)用教學案_第1頁
第1頁 / 共13頁
(浙江專版)2018年高考數(shù)學 第1部分 重點強化專題 專題6 函數(shù)與導(dǎo)數(shù) 突破點16 導(dǎo)數(shù)的應(yīng)用教學案_第2頁
第2頁 / 共13頁
(浙江專版)2018年高考數(shù)學 第1部分 重點強化專題 專題6 函數(shù)與導(dǎo)數(shù) 突破點16 導(dǎo)數(shù)的應(yīng)用教學案_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(浙江專版)2018年高考數(shù)學 第1部分 重點強化專題 專題6 函數(shù)與導(dǎo)數(shù) 突破點16 導(dǎo)數(shù)的應(yīng)用教學案》由會員分享,可在線閱讀,更多相關(guān)《(浙江專版)2018年高考數(shù)學 第1部分 重點強化專題 專題6 函數(shù)與導(dǎo)數(shù) 突破點16 導(dǎo)數(shù)的應(yīng)用教學案(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 突破點16 導(dǎo)數(shù)的應(yīng)用 (對應(yīng)學生用書第57頁) [核心知識提煉] 提煉1 導(dǎo)數(shù)與函數(shù)的單調(diào)性   (1)函數(shù)單調(diào)性的判定方法 在某個區(qū)間(a,b)內(nèi),如果f′(x)>0,那么函數(shù)y=f(x)在此區(qū)間內(nèi)單調(diào)遞增;如果f′(x)<0,那么函數(shù)y=f(x)在此區(qū)間內(nèi)單調(diào)遞減. (2)常數(shù)函數(shù)的判定方法 如果在某個區(qū)間(a,b)內(nèi),恒有f′(x)=0,那么函數(shù)y=f(x)是常數(shù)函數(shù),在此區(qū)間內(nèi)不具有單調(diào)性. (3)已知函數(shù)的單調(diào)性求參數(shù)的取值范圍 設(shè)可導(dǎo)函數(shù)f(x)在某個區(qū)間內(nèi)單調(diào)遞增(或遞減),則可以得出函數(shù)f(x)在這個區(qū)間內(nèi)f′(x)≥0(或f′(x)≤0

2、),從而轉(zhuǎn)化為恒成立問題來解決(注意等號成立的檢驗). 提煉2 函數(shù)極值的判別注意點   (1)可導(dǎo)函數(shù)極值點的導(dǎo)數(shù)為0,但導(dǎo)數(shù)為0的點不一定是極值點,如函數(shù)f(x)=x3,當x=0時就不是極值點,但f′(0)=0. (2)極值點不是一個點,而是一個數(shù)x0,當x=x0時,函數(shù)取得極值.在x0處有f′(x0)=0是函數(shù)f(x)在x0處取得極值的必要不充分條件. (3)函數(shù)f(x)在一閉區(qū)間上的最大值是此函數(shù)在此區(qū)間上的極大值與其端點函數(shù)值中的最大值,函數(shù)f(x)在一閉區(qū)間上的最小值是此函數(shù)在此區(qū)間上的極小值與其端點函數(shù)值中的最小值. 提煉3 函數(shù)最值的判別方法   (1)求函數(shù)f

3、(x)在閉區(qū)間[a,b]上最值的關(guān)鍵是求出f′(x)=0的根的函數(shù)值,再與f(a),f(b)作比較,其中最大的一個是最大值,最小的一個是最小值. (2)求函數(shù)f(x)在非閉區(qū)間上的最值,只需利用導(dǎo)數(shù)法判斷函數(shù)f(x)的單調(diào)性,即可得結(jié)論. [高考真題回訪] 回訪1 函數(shù)的極值與最值 1.(2013·浙江高考)已知e為自然對數(shù)的底數(shù),設(shè)函數(shù)f(x)=(ex-1)(x-1)k(k=1,2),則(  ) A.當k=1時,f(x)在x=1處取到極小值 B.當k=1時,f(x)在x=1處取到極大值 C.當k=2時,f(x)在x=1處取到極小值 D.當k=2時,f(x)在x=1處

4、取到極大值 C [當k=1時,f(x)=(ex-1)(x-1),則f′(x)=ex(x-1)+(ex-1)=exx-1,所以f′(1)=e-1≠0, 所以f(1)不是極值. 當k=2時,f(x)=(ex-1)(x-1)2, 則f′(x)=ex(x-1)2+2(ex-1)(x-1)=ex(x2-1)-2(x-1)=(x-1)[ex(x+1)-2], 所以f′(1)=0,且當x>1時,f′(x)>0;在x=1附近的左側(cè),f′(x)<0,所以f(1)是極小值.] 2.(2013·浙江高考)已知函數(shù)y=f(x)的圖象是下列四個圖象之一,且其導(dǎo)函數(shù)y=f′(x)的圖象如圖16-1所

5、示,則該函數(shù)的圖象是(  ) 圖16-1 B [從導(dǎo)函數(shù)的圖象可以看出,導(dǎo)函數(shù)值先增大后減小,x=0時最大,所以函數(shù)f(x)的圖象的變化率也先增大后減小,在x=0時變化率最大.A項,在x=0時變化率最小,故錯誤;C項,變化率是越來越大的,故錯誤;D項,變化率是越來越小的,故錯誤.B項正確.] 3.(2013·浙江高考)已知a∈R,函數(shù)f(x)=2x3-3(a+1)x2+6ax. (1)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程; (2)若|a|>1,求f(x)在閉區(qū)間[0,2|a|]上的最小值. [解] (1)當a=1時,f′(x)=6x2-1

6、2x+6,所以f′(2)=6. 3分 又因為f(2)=4,所以切線方程為y-4=6(x-2), 即6x-y-8=0. 5分 (2)記g(a)為f(x)在閉區(qū)間[0,2|a|]上的最小值. f′(x)=6x2-6(a+1)x+6a=6(x-1)(x-a). 令f′(x)=0,得x1=1,x2=a. 8分 當a>1時, x 0 (0,1) 1 (1,a) a (a,2a) 2a f′(x) + 0 - 0 + f(x) 0 單調(diào) 遞增 極大值 3a-1 單調(diào) 遞減 極小值 a2(3-a) 單調(diào) 遞增 4a3

7、 比較f(0)=0和f(a)=a2(3-a)的大小可得 g(a)= 10分 當a<-1時, x 0 (0,1) 1 (1,-2a) -2a f′(x) - 0 + f(x) 0 單調(diào)遞減 極小值3a-1 單調(diào)遞增 -28a3-24a2 得g(a)=3a-1. 14分 綜上所述,f(x)在閉區(qū)間[0,2|a|]上的最小值為 g(a)= 15分 回訪2 導(dǎo)數(shù)的綜合應(yīng)用 4.(2017·浙江高考)已知函數(shù)f(x)=(x-)e-x. (1)求f(x)的導(dǎo)函數(shù); (2)求f(x)在區(qū)間上的取值范圍. [解] (1)因為(

8、x-)′=1-, (e-x)′=-e-x, 所以f′(x)=e-x-(x-)e-x =. 6分 (2)由f′(x)==0, 解得x=1或x=. 9分 因為 x 1 f′(x) - 0 + 0 - f(x) e-  0  e-  又f(x)=(-1)2e-x≥0, 所以f(x)在區(qū)間上的取值范圍是. 15分 5.(2014·浙江高考)已知函數(shù)f(x)=x3+3|x-a|(a∈R). (1)若f(x)在[-1,1]上的最大值和最小值分別記為M(a),m(a),求M(a)-m(a); (2)設(shè)b

9、∈R,若[f(x)+b]2≤4對x∈[-1,1]恒成立,求3a+b的取值范圍. [解] (1)因為f(x)= 所以f′(x)= 2分 由于-1≤x≤1. ①當a≤-1時,有x≥a,故f(x)=x3+3x-3a. 此時f(x)在(-1,1)上是增函數(shù),因此,M(a)=f(1)=4-3a,m(a)=f(-1)=-4-3a,故M(a)-m(a)=(4-3a)-(-4-3a)=8. 3分 ②當-1

10、=max{f(1),f(-1)},m(a)=f(a)=a3. 由于f(1)-f(-1)=-6a+2,因此 當-1<a≤時,M(a)-m(a)=-a3-3a+4; 當<a<1時,M(a)-m(a)=-a3+3a+2. 4分 ③當a≥1時,有x≤a,故f(x)=x3-3x+3a, 此時f(x)在(-1,1)上是減函數(shù),因此,M(a)=f(-1)=2+3a,m(a)=f(1)=-2+3a,故M(a)-m(a)=(2+3a)-(-2+3a)=4. 6分 綜上可知, M(a)-m(a)= 7分 (2)令h(x)=f(x)+b,則 h(x)= h′(x)= 因為

11、[f(x)+b]2≤4對x∈[-1,1]恒成立,即-2≤h(x)≤2對x∈[-1,1]恒成立, 所以由(1)知, ①當a≤-1時,h(x)在(-1,1)上是增函數(shù),h(x)在[-1,1]上的最大值是h(1)=4-3a+b,最小值是h(-1)=-4-3a+b,則-4-3a+b≥-2且4-3a+b≤2,矛盾; 9分 ②當-10,t(a

12、)在上是增函數(shù),故t(a)≥t(0)=-2, 因此-2≤3a+b≤0. 11分 ③當

13、1)求曲線y=f(x)在點(1,f(1))處的切線方程; (2)當x∈[0,2]時,求|f(x)|的最大值. [解] (1)由題意f′(x)=3x2-6x+3a, 故f′(1)=3a-3. 2分 又f(1)=1,所以所求的切線方程為y=(3a-3)x-3a+4. 5分 (2)由于f′(x)=3(x-1)2+3(a-1),0≤x≤2, 故①當a≤0時,有f′(x)≤0,此時f(x)在[0,2]上單調(diào)遞減,故|f(x)|max=max{|f(0)|,|f(2)|}=3-3a. 7分 ②當a≥1時,有f′(x)≥0,此時f(x)在[0,2]上單調(diào)遞增,故|f(x)|m

14、ax=max{|f(0)|,|f(2)|}=3a-1. 9分 ③當0<a<1時,設(shè)x1=1-,x2=1+, 則0<x1<x2<2,f′(x)=3(x-x1)(x-x2). 列表如下: x 0 (0,x1) x1 (x1,x2) x2 (x2,2) 2 f′(x) + 0 - 0 + f(x) 3-3a  極大值 f(x1)  極小 f(x2)值  3a-1 由于f(x1)=1+2(1-a)·,f(x2)=1-2(1-a)·, 10分 故f(x1)+f(x2)=2>0,f(x1)-f(x2)=4(1-a)·>0,

15、從而f(x1)>|f(x2)|. 所以|f(x)|max=max{f(0),|f(2)|,f(x1)}. ①當0<a<時,f(0)>|f(2)| . 又f(x1)-f(0)=2(1-a)-(2-3a)=>0, 故|f(x)|max=f(x1)=1+2(1-a). 12分 ②當≤a<1時,|f(2)|=f(2),且f(2)≥f(0). 又f(x1)-|f(2)|=2(1-a)-(3a-2)=, 所以(ⅰ)當≤a<時,f(x1)>|f(2)|. 14分 故f(x)max=f(x1)=1+2(1-a). (ⅱ)當≤a<1時,f(x1)≤|f(2)|. 故f

16、(x)max=|f(2)|=3a-1. 綜上所述, |f(x)|max= 15分 (對應(yīng)學生用書第59頁) 熱點題型1 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性問題 題型分析:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性問題常在解答題的第(1)問中呈現(xiàn),有一定的區(qū)分度,此類題涉及函數(shù)的極值點、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、不等式的恒成立等. 【例1】 已知x=1是f(x)=2x++ln x的一個極值點. (1)求函數(shù)f(x)的單調(diào)遞減區(qū)間; (2)設(shè)函數(shù)g(x)=f(x)-,若函數(shù)g(x)在區(qū)間[1,2]內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍. 【導(dǎo)學號:68334147】 [解] (1)因為

17、f(x)=2x++ln x,所以f′(x)=2-+,因為x=1是f(x)=2x++ln x的一個極值點,所以f′(1)=2-b+1=0,解得b=3,經(jīng)檢驗,符合題意,所以b=3.則函數(shù)f(x)=2x++ln x,其定義域為(0,+∞).4分 令f′(x)=2-+<0,解得-<x<1, 所以函數(shù)f(x)=2x++ln x的單調(diào)遞減區(qū)間為(0,1]. 7分 (2)因為g(x)=f(x)-=2x+ln x-,所以g′(x)=2++. 9分 因為函數(shù)g(x)在[1,2]上單調(diào)遞增,所以g′(x)≥0在[1,2]上恒成立,即2++≥0在x∈[1,2]上恒成立,所以a≥(-2x2-x)ma

18、x,而在[1,2]上,(-2x2-x)max=-3,所以a≥-3. 所以實數(shù)a的取值范圍為[-3,+∞). 15分 [方法指津] 根據(jù)函數(shù)y=f(x)在(a,b)上的單調(diào)性,求參數(shù)范圍的方法: (1)若函數(shù)y=f(x)在(a,b)上單調(diào)遞增,轉(zhuǎn)化為f′(x)≥0在(a,b)上恒成立求解. (2)若函數(shù)y=f(x)在(a,b)上單調(diào)遞減,轉(zhuǎn)化為f′(x)≤0在(a,b)上恒成立求解. (3)若函數(shù)y=f(x)在(a,b)上單調(diào),轉(zhuǎn)化為f′(x)在(a,b)上不變號即f′(x)在(a,b)上恒正或恒負.,(4)若函數(shù)y=f(x)在(a,b)上不單調(diào),轉(zhuǎn)化為f′(x)在(a,b)上變號

19、. [變式訓練1] 設(shè)函數(shù)f(x)=(a∈R). (1)若f(x)在x=0處取得極值,確定a的值,并求此時曲線y=f(x)在點(1,f(1))處的切線方程; (2)若f(x)在[3,+∞)上為減函數(shù),求a的取值范圍. [解] (1)對f(x)求導(dǎo)得 f′(x)= =. 2分 因為f(x)在x=0處取得極值,所以f′(0)=0,即a=0. 當a=0時,f(x)=,f′(x)=,故f(1)=,f′(1)=,從而f(x)在點(1,f(1))處的切線方程為y-=(x-1),化簡得3x-ey=0. 6分 (2)由(1)知f′(x)=. 令g(x)=-3x2+(6

20、-a)x+a, 由g(x)=0,解得x1=, x2=. 8分 當x<x1時,g(x)<0,即f′(x)<0, 故f(x)為減函數(shù); 當x1<x<x2時,g(x)>0,即f′(x)>0, 故f(x)為增函數(shù); 當x>x2時,g(x)<0,即f′(x)<0, 故f(x)為減函數(shù). 由f(x)在[3,+∞)上為減函數(shù),知x2=≤3,解得a≥-, 故a的取值范圍為. 15分 熱點題型2 利用導(dǎo)數(shù)研究函數(shù)的極值、最值問題 題型分析:利用導(dǎo)數(shù)研究函數(shù)的極值、最值是高考重點考查內(nèi)容,主要以解答題的形式考查,難度較大. 【例2】 已知函數(shù)f(x)滿足f(x)=

21、f′(1)ex-1-f(0)x+x2. (1)求f(x)的解析式及單調(diào)區(qū)間; (2)若f(x)≥x2+ax+b,求(a+1)b的最大值. [解] (1)f(x)=f′(1)ex-1-f(0)x+x2?f′(x)=f′(1)ex-1-f(0)+x, 令x=1,得f(0)=1,所以 f(x)=f′(1)ex-1-x+x2, 令x=0,得f(0)=f′(1)e-1=1,解得f′(1)=e,故函數(shù)的解析式為f(x)=ex-x+x2. 3分 令g(x)=f′(x)=ex-1+x,所以g′(x)=ex+1>0,由此知y=g(x)在x∈R上單調(diào)遞增. 當x>0時,f′(x)

22、>f′(0)=0;當x<0時, 由f′(x)<f′(0)=0得: 函數(shù)f(x)=ex-x+x2的單調(diào)遞增區(qū)間為(0,+∞),單調(diào)遞減區(qū)間為(-∞,0). 6分 (2)f(x)≥x2+ax+b?h(x)=ex-(a+1)x-b≥0,得h′(x)=ex-(a+1).8分 ①當a+1≤0時,h′(x)>0?y=h(x)在x∈R上單調(diào)遞增,x→-∞時,h(x)→-∞與h(x)≥0矛盾. ②當a+1>0時,h′(x)>0?x>ln(a+1),h′(x)<0?x<ln(a+1), 得當x=ln(a+1)時,h(x)min=(a+1)-(a+1)ln(a+1)-b≥0,即(a+1)

23、-(a+1)ln(a+1)≥b, 所以(a+1)b≤(a+1)2-(a+1)2ln(a+1)(a+1>0). 令F(x)=x2-x2ln x(x>0),則F′(x)=x(1-2ln x), 所以F′(x)>0?0<x<,F(xiàn)′(x)<0?x>,當x=時, F(x)max=,即當a=-1,b=時,(a+1)b的最大值為. 15分 [方法指津] 利用導(dǎo)數(shù)研究函數(shù)極值、最值的方法 1.若求極值,則先求方程f′(x)=0的根,再檢查f′(x)在方程根的左右函數(shù)值的符號. 2.若已知極值大小或存在情況,則轉(zhuǎn)化為已知方程f′(x)=0根的大小或存在情況來求解. 3.求函數(shù)f(x)在

24、閉區(qū)間[a,b]上的最值時,在得到極值的基礎(chǔ)上,結(jié)合區(qū)間端點的函數(shù)值f(a),f(b)與f(x)的各極值進行比較得到函數(shù)的最值. [變式訓練2] 已知函數(shù)f(x)=ln x+a(1-x). (1)討論f(x)的單調(diào)性; (2)當f(x)有最大值,且最大值大于2a-2時,求a的取值范圍. [解] (1)f(x)的定義域為(0,+∞),f′(x)=-a. 2分 若a≤0,則f′(x)>0,所以f(x)在(0,+∞)上單調(diào)遞增. 若a>0,則當x∈時,f′(x)>0; 當x∈時,f′(x)<0. 所以f(x)在上單調(diào)遞增,在上單調(diào)遞減. 6分 (2)由(1)知,當a≤0

25、時,f(x)在(0,+∞)上無最大值; 當a>0時,f(x)在x=處取得最大值,最大值為 f=ln+a=-ln a+a-1. 10分 因此f>2a-2等價于ln a+a-1<0. 令g(a)=ln a+a-1,則g(a)在(0,+∞)上單調(diào)遞增,g(1)=0. 于是,當01時,g(a)>0. 因此,a的取值范圍是(0,1). 15分 熱點題型3 利用導(dǎo)數(shù)解決不等式問題 題型分析:此類問題以函數(shù)、導(dǎo)數(shù)與不等式相交匯為命題點,實現(xiàn)函數(shù)與導(dǎo)數(shù)、不等式及求最值的相互轉(zhuǎn)化,達成了綜合考查考生解題能力的目的. 【例3】 設(shè)函數(shù)f(x)=-ax. (

26、1)若函數(shù)f(x)在(1,+∞)上為減函數(shù),求實數(shù)a的最小值; (2)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求實數(shù)a的取值范圍. [解] (1)由得x>0且x≠1,則函數(shù)f(x)的定義域為(0,1)∪(1,+∞),因為f(x)在(1,+∞)上為減函數(shù),故f′(x)=-a≤0在(1,+∞)上恒成立. 又f′(x)=-a=-2+-a =-2+-a, 故當=,即x=e2時,f′(x)max=-a. 所以-a≤0,于是a≥,故a的最小值為. 4分 (2)命題“若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立”等價于“當x∈[e

27、,e2]時,有f(x)min≤f′(x)max+a”. 由(1)知,當x∈[e,e2]時,f′(x)max=-a, ∴f′(x)max+a=. 5分 問題等價于:“當x∈[e,e2]時,有f(x)min≤”. ①當a≥時,由(1)知,f(x)在[e,e2]上為減函數(shù), 則f(x)min=f(e2)=-ae2≤,故a≥-. 6分 ②當a<時,由x∈[e,e2]得≤≤1, ∴f′(x)=-2+-a在[e,e2]上的值域為. 7分 (ⅰ)-a≥0,即a≤0,f′(x)≥0,在[e,e2]上恒成立,故f(x)在[e,e2]上為增函數(shù), 于是,f(x)min=f(

28、e)=e-ae≥e>,不合題意. 8分 (ⅱ)-a<0,即00,f(x)為增函數(shù); 12分 所以,fmin(x)=f(x0)=-ax0≤,x0∈(e,e2), 所以,a≥->->-=,與0

29、性或最值. (4)根據(jù)單調(diào)性及最值,得到所證不等式. 特別地:當作差或變形構(gòu)造的新函數(shù)不能利用導(dǎo)數(shù)求解時,一般轉(zhuǎn)化為分別求左、右兩端兩個函數(shù)的最值問題. 2.構(gòu)造輔助函數(shù)的四種方法 (1)移項法:證明不等式f(x)>g(x)(f(x)0(f(x)-g(x)<0),進而構(gòu)造輔助函數(shù)h(x)=f(x)-g(x). (2)構(gòu)造“形似”函數(shù):對原不等式同解變形,如移項、通分、取對數(shù);把不等式轉(zhuǎn)化為左右兩邊是相同結(jié)構(gòu)的式子的結(jié)構(gòu),根據(jù)“相同結(jié)構(gòu)”構(gòu)造輔助函數(shù). (3)主元法:對于(或可化為)f(x1,x2)≥A的不等式,可選x1(或x

30、2)為主元,構(gòu)造函數(shù)f(x,x2)(或f(x1,x)). (4)放縮法:若所構(gòu)造函數(shù)最值不易求解,可將所證明不等式進行放縮,再重新構(gòu)造函數(shù). [變式訓練3] 設(shè)函數(shù)f(x)=ax2ln x+b(x-1)(x>0),曲線y=f(x)過點(e,e2-e+1),且在點(1,0)處的切線方程為y=0. (1)求a,b的值; (2)證明:當x≥1時,f(x)≥(x-1)2; (3)若當x≥1時,f(x)≥m(x-1)2恒成立,求實數(shù)m的取值范圍. [解] (1)函數(shù)f(x)=ax2ln x+b(x-1)(x>0), 可得f′(x)=2aln x+ax+b, 因為f′(1)=

31、a+b=0,f(e)=ae2+b(e-1)=a(e2-e+1)=e2-e+1,所以a=1,b=-1. 2分 (2)證明:f(x)=x2ln x-x+1, 設(shè)g(x)=x2ln x+x-x2(x≥1), g′(x)=2xln x-x+1,(g′(x))′=2ln x+1>0, 所以g′(x)在[0,+∞)上單調(diào)遞增, 所以g′(x)≥g′(1)=0, 所以g(x)在[0,+∞)上單調(diào)遞增, 所以g(x)≥g(1)=0,所以f(x)≥(x-1)2. 6分 (3)設(shè)h(x)=x2ln x-x-m(x-1)2+1, h′(x)=2xln x+x-2m(x-1)-1

32、, 由(2)中知x2ln x≥(x-1)2+x-1=x(x-1), 所以xln x≥x-1,所以h′(x)≥3(x-1)-2m(x-1), ①當3-2m≥0即m≤時,h′(x)≥0, 所以h(x)在[1,+∞)單調(diào)遞增, 所以h(x)≥h(1)=0,成立. 10分 ②當3-m<0即m>時, h′(x)=2xln x-(1-2m)(x-1), (h′(x))′=2ln x+3-2m, 令(h′(x))′=0,得x0=e-2>1, 當x∈[1,x0)時,h′(x)<h′(1)=0, 13分 所以h(x)在[1,x0)上單調(diào)遞減,所以h(x)<h(1)=0,不成立. 綜上,m≤. 15分 13

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!