(浙江專版)2018年高考數(shù)學(xué) 第1部分 重點(diǎn)強(qiáng)化專題 專題5 平面解析幾何 突破點(diǎn)11 直線與圓教學(xué)案
《(浙江專版)2018年高考數(shù)學(xué) 第1部分 重點(diǎn)強(qiáng)化專題 專題5 平面解析幾何 突破點(diǎn)11 直線與圓教學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專版)2018年高考數(shù)學(xué) 第1部分 重點(diǎn)強(qiáng)化專題 專題5 平面解析幾何 突破點(diǎn)11 直線與圓教學(xué)案(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 專題五 平面解析幾何 建知識(shí)網(wǎng)絡(luò) 明內(nèi)在聯(lián)系 [高考點(diǎn)撥] 平面解析幾何是浙江新高考的重點(diǎn)內(nèi)容,常以“兩小一大”呈現(xiàn),兩小題主要考查直線與圓的位置關(guān)系.雙曲線的圖象和性質(zhì)(有時(shí)考查拋物線的圖象和性質(zhì)),一大題??疾橐詸E圓(或拋物線)為背景的圖象和性質(zhì)問(wèn)題.基于上述分析,本專題將從“直線與圓”“圓錐曲線的定義、方程、幾何性質(zhì)”“圓錐曲線中的綜合問(wèn)題”三條主線引領(lǐng)復(fù)習(xí)和提升. 突破點(diǎn)11 直線與圓 (對(duì)應(yīng)學(xué)生用書第41頁(yè)) [核心知識(shí)提煉] 提煉1 圓的方程 (1)圓的標(biāo)準(zhǔn)方程 當(dāng)圓心為(a,b),半徑為r時(shí),其標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,特別地,
2、當(dāng)圓心在原點(diǎn)時(shí),方程為x2+y2=r2. (2)圓的一般方程 x2+y2+Dx+Ey+F=0,其中D2+E2-4F>0,表示以為圓心,為半徑的圓. 提煉2 求解直線與圓相關(guān)問(wèn)題的兩個(gè)關(guān)鍵點(diǎn) (1)三個(gè)定理:切線的性質(zhì)定理,切線長(zhǎng)定理,垂徑定理. (2)兩個(gè)公式:點(diǎn)到直線的距離公式d=,弦長(zhǎng)公式|AB|=2(弦心距d). 提煉3求距離最值問(wèn)題的本質(zhì) (1)圓外一點(diǎn)P到圓C上的點(diǎn)距離的最大值為|PC|+r,最小值為|PC|-r,其中r為圓的半徑. (2)圓上的點(diǎn)到直線的最大距離是d+r,最小距離是d-r,其中d為圓心到直線的距離,r為圓的半徑. (3)過(guò)圓內(nèi)一
3、點(diǎn),直徑是最長(zhǎng)的弦,與此直徑垂直的弦是最短的弦. [高考真題回訪] 回訪1 兩條直線的位置關(guān)系 1.(2012·浙江高考)設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的( ) A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件 A [若直線l1與l2平行,則a(a+1)-2×1=0,即a=-2或a=1,所以a=1是直線l1與直線l2平行的充分不必要條件.] 2.(2011·浙江高考)若直線x-2y+5=0與直線2x+my-6=0互相垂直,則實(shí)數(shù)m=________. 1 [∵直線
4、x-2y+5=0與直線2x+my-6=0互相垂直, ∴2-2m=0,∴m=1.] 回訪2 圓的方程 3.(2016·浙江高考)已知a∈R方程a2x2+(a+2)y2+4x+8y+5a=0表示圓,則圓心坐標(biāo)是________,半徑是________. (-2,-4) 5 [由二元二次方程表示圓的條件可得a2=a+2,解得a=2或-1.當(dāng)a=2時(shí),方程為4x2+4y2+4x+8y+10=0,即x2+y2+x+2y+=0,配方得2+(y+1)2=-<0,不表示圓; 當(dāng)a=-1時(shí),方程為x2+y2+4x+8y-5=0,配方得(x+2)2+(y+4)2=25,則圓心坐標(biāo)為(-2,-4),
5、半徑是5.] 4.(2015·浙江高考)已知實(shí)數(shù)x,y滿足x2+y2≤1,則|2x+y-4|+|6-x-3y|的最大值是________. 15 [∵x2+y2≤1,∴2x+y-4<0,6-x-3y>0,∴|2x+y-4|+|6-x-3y|=4-2x-y+6-x-3y=10-3x-4y. 令z=10-3x-4y, 如圖,設(shè)OA與直線-3x-4y=0垂直,∴直線OA的方程為y=x. 聯(lián)立得A, ∴當(dāng)z=10-3x-4y過(guò)點(diǎn)A時(shí),z取最大值,zmax=10-3×-4×=15.] 5.(2013·浙江高考)如圖11-1,點(diǎn)P(0,-1)是橢圓C1:+=1(a>b>0)的一
6、個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2:x2+y2=4的直徑.l1,l2是過(guò)點(diǎn)P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D. 圖11-1 (1)求橢圓C1的方程; (2)求△ABD面積取最大值時(shí)直線l1的方程. [解] (1)由題意得 2分 所以橢圓C的方程為+y2=1. 5分 (2)設(shè)A(x1,y1),B(x2,y2),D(x0,y0).由題意知直線l1的斜率存在,不妨設(shè)其為k,則直線l1的方程為y=kx-1. 6分 又圓C2:x2+y2=4,故點(diǎn)O到直線l1的距離d=, 所以|AB|=2=2. 7分 又l2⊥l1,故直線
7、l2的方程為x+ky+k=0. 由消去y,整理得(4+k2)x2+8kx=0, 故x0=-,所以|PD|=. 8分 設(shè)△ABD的面積為S,則S=|AB|·|PD|=, 11分 所以S=≤=,當(dāng)且僅當(dāng)k=±時(shí)取等號(hào). 所以所求直線l1的方程為y=±x-1. 15分 回訪3 直線與圓、圓與圓的位置關(guān)系 6.(2014·浙江高考)已知圓x2+y2+2x-2y+a=0截直線x+y+2=0所得弦的長(zhǎng)度為4,則實(shí)數(shù)a的值是( ) A.-2 B.-4 C.-6 D.-8 B [由圓的方程x2+y2+2x-2y+a=0可得,圓心為(-1,1),半徑r=.圓心到直線x+y+
8、2=0的距離為d==.由r2=d2+2得2-a=2+4,所以a=-4.] 7.(2013·浙江高考)直線y=2x+3被圓x2+y2-6x-8y=0所截得的弦長(zhǎng)等于__________. 4 [圓的方程可化為(x-3)2+(y-4)2=25,故圓心為(3,4),半徑r=5.又直線方程為2x-y+3=0,所以圓心到直線的距離為d==,所以弦長(zhǎng)為2 =2×=2=4 .] 8.(2015·浙江高考)如圖11-2,已知拋物線C1:y=x2,圓C2:x2+(y-1)2=1,過(guò)點(diǎn)P(t,0)(t>0)作不過(guò)原點(diǎn)O的直線PA,PB分別與拋物線C1和圓C2相切,A,B為切點(diǎn). 圖11-2 (
9、1)求點(diǎn)A,B的坐標(biāo); (2)求△PAB的面積. [解] (1)由題意知直線PA的斜率存在,故可設(shè)直線PA的方程為y=k(x-t). 2分 由消去y,整理得x2-4kx+4kt=0, 由于直線PA與拋物線相切,得k=t. 3分 因此,點(diǎn)A的坐標(biāo)為(2t,t2). 設(shè)圓C2的圓心為D(0,1),點(diǎn)B的坐標(biāo)為(x0,y0).由題意知:點(diǎn)B,O關(guān)于直線PD對(duì)稱,故 5分 解得因此,點(diǎn)B的坐標(biāo)為. 7分 (2)由(1)知|AP|=t·, 直線PA的方程為tx-y-t2=0. 點(diǎn)B到直線PA的距離是d=. 11分 設(shè)△PAB的面積為S(t),則S(
10、t)=|AP|·d=. 15分 (對(duì)應(yīng)學(xué)生用書第43頁(yè)) 熱點(diǎn)題型1 圓的方程 題型分析:求圓的方程是高考考查的重點(diǎn)內(nèi)容,常用的方法是待定系數(shù)法或幾何法. 【例1】 (1)已知圓C關(guān)于y軸對(duì)稱,經(jīng)過(guò)點(diǎn)A(1,0),且被x軸分成的兩段弧長(zhǎng)之比為1∶2,則圓C的方程為_(kāi)_______. (2)已知⊙M的圓心在第一象限,過(guò)原點(diǎn)O被x軸截得的弦長(zhǎng)為6,且與直線3x+y=0相切,則圓M的標(biāo)準(zhǔn)方程為_(kāi)_______. (1)x2+2= (2)(x-3)2+(y-1)2=10 [(1)因?yàn)閳AC關(guān)于y軸對(duì)稱,所以圓C的圓心C在y軸上,可設(shè)C(0,b), 設(shè)圓C的半徑為r,則圓C的方程為
11、x2+(y-b)2=r2. 依題意,得解得 所以圓C的方程為x2+2=. (2)法一:設(shè)⊙M的方程為(x-a)2+(y-b)2=r2(a>0,b>0,r>0),由題意知 解得故⊙M的方程為(x-3)2+(y-1)2=10. 法二:因?yàn)閳AM過(guò)原點(diǎn),故可設(shè)方程為x2+y2+Dx+Ey=0,又被x軸截得的弦長(zhǎng)為6且圓心在第一象限,則2=32,故D=-6,與3x+y=0相切,則=,即E=D=-2,因此所求方程為x2+y2-6x-2y=0. 故⊙M的標(biāo)準(zhǔn)方程為(x-3)2+(y-1)2=10.] [方法指津] 求圓的方程的兩種方法 1.幾何法,通過(guò)研究圓的性質(zhì)、直線和圓、圓
12、與圓的位置關(guān)系,進(jìn)而求得圓的基本量和方程. 2.代數(shù)法,即用待定系數(shù)法先設(shè)出圓的方程,再由條件求得各系數(shù). [變式訓(xùn)練1] (1)(2017·溫州市普通高中高考模擬考試)圓x2+y2-2y-3=0的圓心坐標(biāo)是________,半徑是________. (2)拋物線y2=4x與過(guò)其焦點(diǎn)且垂直于x軸的直線相交于A,B兩點(diǎn),其準(zhǔn)線與x軸的交點(diǎn)為M,則過(guò)M,A,B三點(diǎn)的圓的標(biāo)準(zhǔn)方程為_(kāi)_______. (1)(0,1) 2 (2)(x-1)2+y2=4 [(1)化圓的一般式方程為標(biāo)準(zhǔn)方程,得x2+(y-1)2=4,由此知該圓的圓心坐標(biāo)為(0,1),半徑為2. (2)由題意知,A(1,2
13、),B(1,-2),M(-1,0), △AMB是以點(diǎn)M為直角頂點(diǎn)的直角三角形,則線段AB是所求圓的直徑,故所求圓的標(biāo)準(zhǔn)方程為(x-1)2+y2=4.] 熱點(diǎn)題型2 直線與圓、圓與圓的位置關(guān)系 題型分析:直線與圓、圓與圓的位置關(guān)系是高考考查的熱點(diǎn)內(nèi)容,解決的方法主要有幾何法和代數(shù)法. 【例2】 (1)已知直線l:mx+y+3m-=0與圓x2+y2=12交于A,B兩點(diǎn),過(guò)A,B分別作l的垂線與x軸交于C,D兩點(diǎn).若|AB|=2,則|CD|=________. 4 [由直線l:mx+y+3m-=0知其過(guò)定點(diǎn)(-3,),圓心O到直線l的距離為d=. 由|AB|=2得2+()2=1
14、2,解得m=-.又直線l的斜率為-m=,所以直線l的傾斜角α=. 畫出符合題意的圖形如圖所示,過(guò)點(diǎn)C作CE⊥BD,則∠DCE=.在Rt△CDE中,可得|CD|==2×=4.] (2)(2017·金華十校聯(lián)考)如圖11-3,已知圓G:(x-2)2+y2=r2是橢圓+y2=1的內(nèi)接△ABC的內(nèi)切圓,其中A為橢圓的左頂點(diǎn). ①求圓G的半徑r; ②過(guò)點(diǎn)M(0,1)作圓G的兩條切線交橢圓于E,F(xiàn)兩點(diǎn),證明:直線EF與圓G相切. 圖11-3 [解]?、僭O(shè)B(2+r,y0),過(guò)圓心G作GD⊥AB于D,BC交長(zhǎng)軸于H. 由=得=, 即y0=, ① 2分 而B(2+
15、r,y0)在橢圓上, y=1-==-, ?、?3分 由①②式得15r2+8r-12=0, 解得r=或r=-(舍去). 5分 ②證明:設(shè)過(guò)點(diǎn)M(0,1)與圓(x-2)2+y2=相切的直線方程為y=kx+1,③ 則=,即32k2+36k+5=0,④ 解得k1=,k2=. 將③代入+y2=1得(16k2+1)x2+32kx=0,則異于零的解為x=-. 8分 設(shè)F(x1,k1x1+1),E(x2,k2x2+1),則 x1=-,x2=-, 12分 則直線FE的斜率為kEF===, 于是直線FE的方程為y+-1=. 即y=x-,則圓心(2,0)到
16、直線FE的距離d==,故結(jié)論成立. 15分 [方法指津] 1.直線(圓)與圓的位置關(guān)系的解題思路 (1)討論直線與圓及圓與圓的位置關(guān)系時(shí),要注意數(shù)形結(jié)合,充分利用圓的幾何性質(zhì)尋找解題途徑,減少運(yùn)算量.研究直線與圓的位置關(guān)系主要通過(guò)圓心到直線的距離和半徑的比較實(shí)現(xiàn),兩個(gè)圓的位置關(guān)系的判斷依據(jù)是兩圓心距離與兩半徑差與和的比較. (2)直線與圓相切時(shí)利用“切線與過(guò)切點(diǎn)的半徑垂直,圓心到切線的距離等于半徑”建立切線斜率的等式,所以求切線方程時(shí)主要選擇點(diǎn)斜式,過(guò)圓外一點(diǎn)求解切線段長(zhǎng)可轉(zhuǎn)化為圓心到圓外點(diǎn)的距離,利用勾股定理計(jì)算. 2.弦長(zhǎng)的求解方法 (1)根據(jù)平面幾何知識(shí)
17、構(gòu)建直角三角形,把弦長(zhǎng)用圓的半徑和圓心到直線的距離表示,l=2(其中l(wèi)為弦長(zhǎng),r為圓的半徑,d為圓心到直線的距離). (2)根據(jù)公式:l=|x1-x2|求解(其中l(wèi)為弦長(zhǎng),x1,x2為直線與圓相交所得交點(diǎn)的橫坐標(biāo),k為直線的斜率). (3)求出交點(diǎn)坐標(biāo),用兩點(diǎn)間距離公式求解. [變式訓(xùn)練2] (1)(2017·金麗衢十二校高三第二次聯(lián)考)如圖11-4,圓M和圓N與直線l:y=kx分別相切于A,B,與x軸相切,并且圓心連線與l交于點(diǎn)C,若|OM|=|ON|且=2,則實(shí)數(shù)k的值為( ) 【導(dǎo)學(xué)號(hào):68334120】 圖11-4 A.1 B. C.
18、 D. D [分別過(guò)點(diǎn)M,N作x軸的垂線,垂足分別為E,F(xiàn).由題意,得△MAC∽△NBC,由=2,知|MA|=2|NB|.又由x軸與直線y=kx是兩個(gè)圓的公切線知∠MON=90°,|MA|=|ME|,|NB|=|NF|,結(jié)合|OM|=|ON|,知|ME|=2|NF|,△OME≌△NOF,所以|OF|=|ME|=2|NF|,所以tan∠NOF==,則tan∠BOF=tan 2∠NOF==,故選D. (2)已知點(diǎn)M(-1,0),N(1,0),曲線E上任意一點(diǎn)到點(diǎn)M的距離均是到點(diǎn)N距離的倍. ①求曲線E的方程; ②已知m≠0,設(shè)直線l1:x-my-1=0交曲線E于A,C兩點(diǎn),直線
19、l2:mx+y-m=0交曲線E于B,D兩點(diǎn).C,D兩點(diǎn)均在x軸下方.當(dāng)CD的斜率為-1時(shí),求線段AB的長(zhǎng). [解] ①設(shè)曲線E上任意一點(diǎn)坐標(biāo)為(x,y), 由題意,=, 2分 整理得x2+y2-4x+1=0,即 (x-2)2+y2=3為所求. 4分 ②由題知l1⊥l2,且兩條直線均恒過(guò)點(diǎn)N(1,0),設(shè)曲線E的圓心為E,則E(2,0),線段CD的中點(diǎn)為P,則直線EP:y=x-2,設(shè)直線CD:y=-x+t,由解得點(diǎn)P. 7分 由圓的幾何性質(zhì), |NP|=|CD|=, 而|NP|2=2+2,|ED|2=3, |EP|2=2,∴2+2=3-2,解得t=0或t=3, 又C,D兩點(diǎn)均在x軸下方,直線CD:y=-x. 由解得或 9分 設(shè)C,D, 由消去y得: (u2+1)x2-2(u2+2)x+u2+1=0,(*) 方程(*)的兩根之積為1,所以點(diǎn)A的橫坐標(biāo) xA=2+,又因?yàn)辄c(diǎn)C在直線l1:x-my-1=0上,解得m=+1, 11分 直線l1:y=(-1)(x-1),所以A(2+,1), 同理可得,B(2-,1),所以線段AB的長(zhǎng)為2. 15分 10
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 銷售技巧培訓(xùn)課件:接近客戶的套路總結(jié)
- 20種成交的銷售話術(shù)和技巧
- 銷售技巧:接近客戶的8種套路
- 銷售套路總結(jié)
- 房產(chǎn)銷售中的常見(jiàn)問(wèn)題及解決方法
- 銷售技巧:值得默念的成交話術(shù)
- 銷售資料:讓人舒服的35種說(shuō)話方式
- 汽車銷售績(jī)效管理規(guī)范
- 銷售技巧培訓(xùn)課件:絕對(duì)成交的銷售話術(shù)
- 頂尖銷售技巧總結(jié)
- 銷售技巧:電話營(yíng)銷十大定律
- 銷售逼單最好的二十三種技巧
- 銷售最常遇到的10大麻煩
- 銷售資料:銷售10大黃金觀念
- 銷售資料:導(dǎo)購(gòu)常用的搭訕?lè)椒?/a>