《2022屆高考數(shù)學(xué)總復(fù)習(xí) 第九單元 解析幾何 第55講 兩直線的位置關(guān)系檢測(cè)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022屆高考數(shù)學(xué)總復(fù)習(xí) 第九單元 解析幾何 第55講 兩直線的位置關(guān)系檢測(cè)(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022屆高考數(shù)學(xué)總復(fù)習(xí) 第九單元 解析幾何 第55講 兩直線的位置關(guān)系檢測(cè)
1.一條光線從點(diǎn)(5,3)射入,與x軸正向成α角,遇x軸后反射,若tan α=3,則反射線所在的直線方程為(D)
A. y=3x-12 B. y=-3x-12
C. y=3x+12 D. y=-3x+12
反射線所在的直線過(guò)點(diǎn)(5,-3),
斜率k=-tan α=-3,
由點(diǎn)斜式得y+3=-3(x-5),即y=-3x+12.
2.(2017·江西景德鎮(zhèn)二模)若直線l1:(m-2)x-y-1=0與直線l2:3x-my=0互相平行,則m的值等于(D)
A.0或-1或3 B.0或3
C.0或-1
2、 D.-1或3
當(dāng)m=0時(shí),兩條直線方程分別化為-2x-y-1=0,3x=0,此時(shí)兩直線不平行;
當(dāng)m≠0時(shí),由于l1∥l2,則=,解得m=-1或3.
經(jīng)檢驗(yàn)滿足條件.
綜上,m=-1或3.
3.“m=”是“直線(m+2)x+3my+1=0與直線(m-2)x+(m+2)y-3=0互相垂直”的(B)
A.充分必要條件 B.充分而不必要條件
C.必要而不充分條件 D.既不充分也不必要條件
容易檢驗(yàn)當(dāng)m=時(shí),兩條直線互相垂直,所以可以否定C和D.觀察兩個(gè)方程的系數(shù),不難得到,當(dāng)m+2=0時(shí),即m=-2時(shí),兩條直線也互相垂直,故選B.
4.(2017·廣州市二測(cè))已知三條直線
3、2x-3y+1=0,4x+3y+5=0,mx-y-1=0不能構(gòu)成三角形,則實(shí)數(shù)m的取值集合為(D)
A.{-,} B.{,-}
C.{-,,} D.{-,-,}
記l1:2x-3y+1=0,l2:4x+3y+5=0,l3:mx-y-1=0,
l1,l2,l3不構(gòu)成三角形,當(dāng)且僅當(dāng):l3∥l1或l3∥l2或l1、l2、l3相交于同一點(diǎn).
①l3∥l1,得m=;
②l3∥l2,得m=-;
③l1與l2的交點(diǎn)為(-1,-)∈l3,
得-m+-1=0,得m=-.
綜上,實(shí)數(shù)m的取值集合為{-,-,}.
5.直線ax+4y-2=0與2x-5y+c=0垂直于點(diǎn)(1,m),則
4、a= 10 ,c= -12 ,m=?。? .
因?yàn)閮芍本€互相垂直,所以-·=-1,
所以a=10.
又兩直線垂直于點(diǎn)(1,m),所以(1,m)在直線l1和l2上,
所以10×1+4×m-2=0,所以m=-2,
再將(1,-2)代入2x-5y+c=0,
得2×1-5×(-2)+c=0,得c=-12.
6.已知a,b為正數(shù),且直線ax+by-6=0與直線2x+(b-3)y+5=0互相平行,則2a+3b的最小值為 25 .
由兩直線平行可得a(b-3)=2b,即2b+3a=ab,+=1,
又a,b為正數(shù),
所以2a+3b=(2a+3b)·(+)=13++≥13+2=25.
5、當(dāng)且僅當(dāng)a=b=5時(shí)取等號(hào),故2a+3b的最小值為25.
7.設(shè)直線l1:y=k1x+1,l2:y=k2x-1,其中實(shí)數(shù)k1、k2滿足k1k2+2=0.
(1)證明l1與l2相交;
(2)證明l1與l2的交點(diǎn)在橢圓2x2+y2=1上.
(1)反證法:假設(shè)l1與l2不相交,則l1與l2平行,有k1=k2,代入k1k2+2=0,得k+2=0.
此與k1為實(shí)數(shù)的事實(shí)相矛盾,從而k1≠k2,
即l1與l2相交.
(2)(方法一)由方程組
解得交點(diǎn)P的坐標(biāo)(x,y)滿足
而2x2+y2=2()2+()2
===1.
此即表明交點(diǎn)P(x,y)在橢圓2x2+y2=1上.
(方法
6、二)交點(diǎn)P的坐標(biāo)(x,y)滿足
故x≠0,從而代入k1k2+2=0,
得·+2=0,整理得2x2+y2=1.
所以交點(diǎn)P在橢圓2x2+y2=1上.
8.(2018·湖南長(zhǎng)郡中學(xué)聯(lián)考)已知f(x)為奇函數(shù),函數(shù)f(x)與g(x)的圖象關(guān)于直線y=x+1對(duì)稱(chēng),若g(1)=4,則f(-3)=(A)
A.-2 B.2
C.-1 D.4
因?yàn)間(1)=4,所以(1,4)在g(x)的圖象上,
因?yàn)閒(x)與g(x)的圖象關(guān)于直線y=x+1對(duì)稱(chēng),
所以(1,4)關(guān)于y=x+1的對(duì)稱(chēng)點(diǎn)在y=f(x)的圖象上,
因?yàn)?1,4)關(guān)于y=x+1的對(duì)稱(chēng)點(diǎn)為(3,2),
所以f(3)
7、=2,
又f(x)為奇函數(shù),所以f(-3)=-f(3)=-2.
9.(2017·江西南昌模擬)m∈R,直線(2m+1)x+(m+1)y-7m-4=0恒過(guò)定點(diǎn),此定點(diǎn)的坐標(biāo)為 (3,1) .
直線(2m+1)x+(m+1)y-7m-4=0,
即(2x+y-7)m+x+y-4=0,
由解得
故直線過(guò)定點(diǎn)(3,1).
10.已知直線l:2x-3y+1=0,點(diǎn)A(-1,-2).求:
(1)點(diǎn)A關(guān)于直線l的對(duì)稱(chēng)點(diǎn)A′的坐標(biāo);
(2)直線m:3x-2y-6=0關(guān)于直線l的對(duì)稱(chēng)直線m′的方程;
(3)直線l關(guān)于點(diǎn)A(-1,-2)對(duì)稱(chēng)的直線l′的方程.
(1)設(shè)A′(x,y),由已知條件有:
解得所以A′(-,).
(2)在直線m上取一點(diǎn),如M(2,0),
則M(2,0)關(guān)于直線l的對(duì)稱(chēng)點(diǎn)必在m′上,設(shè)對(duì)稱(chēng)點(diǎn)為M′(a,b),則
解得M′(,).
設(shè)m與l的交點(diǎn)為N,
由得N(4,3).
又因?yàn)閙′經(jīng)過(guò)點(diǎn)N(4,3),
所以由兩點(diǎn)式得直線m′的方程為9x-46y+102=0.
(3)設(shè)P(x,y)為l′上任意一點(diǎn),
則P關(guān)于點(diǎn)A(-1,-2)的對(duì)稱(chēng)點(diǎn)為P′(-2-x,-4-y),因?yàn)镻′在直線l上,
所以2(-2-x)-3(-4-y)+1=0,即2x-3y-9=0為所求.