九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題七 隨機(jī)變量、空間向量(理)7.2 運(yùn)用空間向量求角達(dá)標(biāo)訓(xùn)練(含解析)

上傳人:xt****7 文檔編號:106070996 上傳時(shí)間:2022-06-13 格式:DOC 頁數(shù):9 大小:257.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題七 隨機(jī)變量、空間向量(理)7.2 運(yùn)用空間向量求角達(dá)標(biāo)訓(xùn)練(含解析)_第1頁
第1頁 / 共9頁
江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題七 隨機(jī)變量、空間向量(理)7.2 運(yùn)用空間向量求角達(dá)標(biāo)訓(xùn)練(含解析)_第2頁
第2頁 / 共9頁
江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題七 隨機(jī)變量、空間向量(理)7.2 運(yùn)用空間向量求角達(dá)標(biāo)訓(xùn)練(含解析)_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題七 隨機(jī)變量、空間向量(理)7.2 運(yùn)用空間向量求角達(dá)標(biāo)訓(xùn)練(含解析)》由會員分享,可在線閱讀,更多相關(guān)《江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題七 隨機(jī)變量、空間向量(理)7.2 運(yùn)用空間向量求角達(dá)標(biāo)訓(xùn)練(含解析)(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題七 隨機(jī)變量、空間向量(理)7.2 運(yùn)用空間向量求角達(dá)標(biāo)訓(xùn)練(含解析) 1.(2018·南京學(xué)情調(diào)研)如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1. (1)若直線PB與CD所成角的大小為,求BC的長; (2)求二面角B-PD-A的余弦值. 解:(1) 以{,,}為單位正交基底,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz. 因?yàn)锳P=AB=AD=1, 所以A(0,0,0),B(1,0,0),D(0,1,0),P(0,0,1). 設(shè)C(1,y,0),則=(1,0,-1),=(-1,1-y,0). 因?yàn)?/p>

2、直線PB與CD所成角大小為, 所以|cos〈,〉|==, 即=,解得y=2或y=0(舍), 所以C(1,2,0),所以BC的長為2. (2)設(shè)平面PBD的法向量為n1=(x,y,z). 因?yàn)椋?1,0,-1),=(0,1,-1), 則即 令x=1,則y=1,z=1,所以n1=(1,1,1). 因?yàn)槠矫鍼AD的一個法向量為n2=(1,0,0), 所以cos〈n1,n2〉==, 所以由圖可知二面角B-PD-A的余弦值為. 2.(2018·蘇北四市期末)在正三棱柱ABC-A1B1C1中,已知AB=1,AA1=2,E,F(xiàn),G分別是棱AA1,AC和A1C1的中點(diǎn),以

3、{,,→}為正交基底,建立如圖所示的空間直角坐標(biāo)系F-xyz. (1)求異面直線AC與BE所成角的余弦值; (2)求二面角F-BC1-C的余弦值. 解:(1)因?yàn)锳B=1,AA1=2,則F(0,0,0),A,C,B,E,A1,C1, 所以=(-1,0,0),=. 記異面直線AC和BE所成角為α, 則cos α=|cos〈,〉|==, 所以異面直線AC和BE所成角的余弦值為. (2)設(shè)平面BFC1的法向量為m=(x1,y1,z1). 因?yàn)椋剑剑? 則即 取x1=4,得平面BFC1的一個法向量為m=(4,0,1). 設(shè)平面BCC1的法向量為n=(x2,y2,z2). 因?yàn)?/p>

4、=,=(0,0,2), 則即 取x2=,得平面BCC1的一個法向量為n=(,-1,0), 所以cos〈m,n〉==. 根據(jù)圖形可知二面角F-BC1-C為銳二面角, 所以二面角F-BC1-C的余弦值為. 3.(2018·南京、鹽城二模)如圖,在直四棱柱ABCD-A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC=60°,E,F(xiàn)分別是BC,A1C的中點(diǎn). (1)求異面直線EF,AD所成角的余弦值; (2)點(diǎn)M在線段A1D上,=λ.若CM∥平面AEF,求實(shí)數(shù)λ的值. 解:因?yàn)樗睦庵鵄BCD-A1B1C1D1為直四棱柱, 所以A1A⊥平面ABCD. 又AE?

5、平面ABCD,AD?平面ABCD, 所以A1A⊥AE,A1A⊥AD. 在菱形ABCD中,∠ABC=60°,則△ABC是等邊三角形. 因?yàn)镋是BC的中點(diǎn),所以BC⊥AE. 因?yàn)锽C∥AD,所以AE⊥AD. 故以A為原點(diǎn),AE,AD,AA1所在直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系.則A(0,0,0),E(,0,0),C(,1,0),D(0,2,0),A1(0,0,2),F(xiàn). (1)因?yàn)椋?0,2,0),=, 所以cos〈,〉==, 所以異面直線EF,AD所成角的余弦值為. (2)設(shè)M(x,y,z),由于點(diǎn)M在線段A1D上,且 =λ,即=λ, 則(x,y,z-2

6、)=λ(0,2,-2). 解得M(0,2λ,2-2λ),=(-,2λ-1,2-2λ). 設(shè)平面AEF的法向量為n=(x0,y0,z0). 因?yàn)椋?,0,0),=, 所以即 令y0=2,得z0=-1, 所以平面AEF的一個法向量為n=(0,2,-1). 由于CM∥平面AEF,則n·=0, 即2(2λ-1)-(2-2λ)=0,解得λ=. 4.如圖,在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AB=AC=1,AA1=2,點(diǎn)P是棱BB1上一點(diǎn),滿足=λ (0≤λ≤1). (1)若λ=,求直線PC與平面A1BC所成角的正弦值; (2)若二面角P-A1C-B的正弦值為

7、,求λ的值. 解:以A為坐標(biāo)原點(diǎn),分別以AB,AC,AA1所在直線為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz.因?yàn)锳B=AC=1,AA1=2,則A(0,0,0),B(1,0,0),C(0,1,0),A1(0,0,2),B1(1,0,2),P(1,0,2λ). (1)由λ=得,=,=(1,0,-2),=(0,1,-2). 設(shè)平面A1BC的法向量為n1=(x1,y1,z1), 由得 不妨取z1=1,則x1=y(tǒng)1=2, 從而平面A1BC的一個法向量為n1=(2,2,1). 設(shè)直線PC與平面A1BC所成的角為θ, 則sin θ===, 所以直線PC與平面A1BC所成角的

8、正弦值為. (2)設(shè)平面PA1C的法向量為n2=(x2,y2,z2), 又=(1,0,2λ-2), 故由得 不妨取z2=1,則x2=2-2λ,y2=2, 所以平面PA1C的一個法向量為n2=(2-2λ,2,1). 則cos〈n1,n2〉=, 又二面角P-A1C-B的正弦值為, 所以=, 化簡得λ2+8λ-9=0,解得λ=1或λ=-9(舍去), 故λ的值為1. B組——大題增分練 1.(2018·鎮(zhèn)江期末)如圖,AC⊥BC,O為AB中點(diǎn),且DC⊥平面ABC,DC∥BE.已知AC=BC=DC=BE=2. (1)求直線AD與CE所成的角; (2)求二面角O-CE-B的

9、余弦值. 解:(1)因?yàn)锳C⊥CB且DC⊥平面ABC,則以C為原點(diǎn),CB為x軸正方向,CA為y軸正方向,CD為z軸正方向,建立如圖所示的空間直角坐標(biāo)系. 因?yàn)锳C=BC=BE=2,則C(0,0,0),B(2,0,0),A(0,2,0),O(1,1,0),E(2,0,2),D(0,0,2),且=(0,-2,2),=(2,0,2). 所以cos〈,〉===. 所以直線AD和CE的夾角為60°. (2)平面BCE的一個法向量為m=(0,1,0), 設(shè)平面OCE的法向量n=(x0,y0,z0). 由=(1,1,0),=(2,0,2), 得則解得 取x0=-1,則n=(-1,1,1).

10、 因?yàn)槎娼荗-CE-B為銳二面角,記為θ, 則cos θ=|cos〈m,n〉|==. 即二面角O-CE-B的余弦值為. 2.(2018·江蘇高考)如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點(diǎn)P,Q分別為A1B1,BC的中點(diǎn). (1)求異面直線BP與AC1所成角的余弦值; (2)求直線CC1與平面AQC1所成角的正弦值. 解:如圖,在正三棱柱ABC-A1B1C1中,設(shè)AC,A1C1的中點(diǎn)分別為O,O1,則OB⊥OC,OO1⊥OC,OO1⊥OB,以{,,}為基底,建立空間直角坐標(biāo)系O -xyz. 因?yàn)锳B=AA1=2,所以A(0,-1,0),B(,0,0),C(0

11、,1,0),A1(0,-1,2),B1(,0,2),C1(0,1,2). (1)因?yàn)镻為A1B1的中點(diǎn),所以P, 從而=,=(0,2,2), 所以|cos〈,〉|===. 所以異面直線BP與AC1所成角的余弦值為. (2)因?yàn)镼為BC的中點(diǎn),所以Q, 因此=,=(0,2,2),=(0,0,2). 設(shè)n=(x,y,z)為平面AQC1的一個法向量, 則即 不妨取n=(,-1,1). 設(shè)直線CC1與平面AQC1所成角為θ, 則sin θ=|cos〈,n〉|===. 所以直線CC1與平面AQC1所成角的正弦值為. 3. (2018·蘇錫常鎮(zhèn)調(diào)研(一))如圖,在四棱錐P-ABC

12、D中,已知底面ABCD是矩形,PD垂直于底面ABCD,PD=AD=2AB,點(diǎn)Q為線段PA(不含端點(diǎn))上一點(diǎn). (1)當(dāng)Q是線段PA的中點(diǎn)時(shí),求CQ與平面PBD所成角的正弦值; (2)已知二面角Q-BD-P的正弦值為,求的值. 解:以{,,}為正交基底建立如圖所示的空間直角坐標(biāo)系D-xyz. 不妨設(shè)AB=1,則D(0,0,0),A(2,0,0),C(0,1,0),B(2,1,0),P(0,0,2). =(2,1,0),=(0,0,2). (1)當(dāng)Q是線段PA的中點(diǎn)時(shí),Q(1,0,1),=(1,-1,1). 設(shè)平面PBD的法向量為m=(x,y,z). 則即 不妨取x=1,解得y=

13、-2. 則平面PBD的一個法向量為m=(1,-2,0). 故cos〈m,〉===. 綜上,CQ與平面PBD所成角的正弦值為. (2)=(-2,0,2),設(shè)=λ (λ∈(0,1)), 即=(-2λ,0,2λ). 故Q(2-2λ,0,2λ),=(2,1,0),=(2-2λ,0,2λ). 設(shè)平面QBD的法向量為n=(x,y,z). 則即 不妨取x=1,則y=-2,z=1-, 故平面QBD的一個法向量為n=. 由(1)得平面PBD的一個法向量m=(1,-2,0), 由題意得cos2〈m,n〉= ===1-2=, 解得λ=或λ=-1. 又λ∈(0,1),所以λ=, 所以=

14、,即―= ,即=. 4.如圖,在四棱錐S-ABCD中,SD⊥平面ABCD,四邊形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1. (1)求二面角S-BC-A的余弦值; (2)設(shè)P是棱BC上一點(diǎn),E是SA的中點(diǎn),若PE與平面SAD所成角的正弦值為,求線段CP的長. 解:(1)由題意,以D為坐標(biāo)原點(diǎn),DA,DC,DS所在直線為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系D-xyz, 則D(0,0,0),A(2,0,0),B(2,2,0),C(0,1,0),S(0,0,2), 所以=(2,2,-2),=(0,1,-2),=(0,0,2). 設(shè)平面SBC的

15、法向量為n1=(x,y,z), 則即 令z=1,得x=-1,y=2, 所以n1=(-1,2,1)是平面SBC的一個法向量. 因?yàn)镾D⊥平面ABC,取平面ABC的一個法向量n2=(0,0,1). 設(shè)二面角S-BC-A的大小為θ, 由圖可知二面角S-BC-A為銳二面角, 所以|cos θ|===, 所以二面角S-BC-A的余弦值為. (2)由(1)知E(1,0,1), =(2,1,0),=(1,-1,1). 設(shè)=λ (0≤λ≤1), 則=λ(2,1,0)=(2λ,λ,0), 所以=-=(1-2λ,-1-λ,1). 易知CD⊥平面SAD, 所以=(0,-1,0)是平面SAD的一個法向量. 設(shè)PE與平面SAD所成的角為α, 所以sin α=|cos〈,〉|==, 即=,得λ=或λ=(舍去). 所以=,||=, 所以線段CP的長為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!