九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2022高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 保分專題三 空間位置與空間計(jì)算練習(xí) 理

上傳人:xt****7 文檔編號(hào):107701802 上傳時(shí)間:2022-06-15 格式:DOC 頁數(shù):22 大?。?29KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 保分專題三 空間位置與空間計(jì)算練習(xí) 理_第1頁
第1頁 / 共22頁
2022高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 保分專題三 空間位置與空間計(jì)算練習(xí) 理_第2頁
第2頁 / 共22頁
2022高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 保分專題三 空間位置與空間計(jì)算練習(xí) 理_第3頁
第3頁 / 共22頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 保分專題三 空間位置與空間計(jì)算練習(xí) 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 保分專題三 空間位置與空間計(jì)算練習(xí) 理(22頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 保分專題三 空間位置與空間計(jì)算練習(xí) 理 一、選擇題 1.已知E,F(xiàn),G,H是空間四點(diǎn),命題甲:E,F(xiàn),G,H四點(diǎn)不共面,命題乙:直線EF和GH不相交,則甲是乙成立的(  ) A.必要不充分條件   B.充分不必要條件 C.充要條件 D.既不充分也不必要條件 解析:若E,F(xiàn),G,H四點(diǎn)不共面,則直線EF和GH肯定不相交,但直線EF和GH不相交,E,F(xiàn),G,H四點(diǎn)可以共面,例如EF∥GH,故甲是乙成立的充分不必要條件. 答案:B 2.已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,給出四個(gè)命題: ①若α∩β=m,n?α,n⊥m,則α⊥β;

2、 ②若m⊥α,m⊥β,則α∥β; ③若m⊥α,n⊥β,m⊥n,則α⊥β; ④若m∥α,n∥β,m∥n,則α∥β. 其中正確的命題是(  ) A.①② B.②③ C.①④ D.②④ 解析:兩個(gè)平面斜交時(shí)也會(huì)出現(xiàn)一個(gè)平面內(nèi)的直線垂直于兩個(gè)平面的交線的情況,①不正確;垂直于同一條直線的兩個(gè)平面平行,②正確;當(dāng)兩個(gè)平面與兩條互相垂直的直線分別垂直時(shí),它們所成的二面角為直二面角,故③正確;當(dāng)兩個(gè)平面相交時(shí),分別與兩個(gè)平面平行的直線也平行,故④不正確. 答案:B 3.如圖,在三棱錐P-ABC中,不能證明AP⊥BC的條件是(  ) A.AP⊥PB,AP⊥PC B.AP⊥PB,BC⊥P

3、B C.平面BPC⊥平面APC,BC⊥PC D.AP⊥平面PBC 解析:A中,因?yàn)锳P⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC.又BC?平面PBC,所以AP⊥BC,故A正確;C中,因?yàn)槠矫鍮PC⊥平面APC,BC⊥PC,所以BC⊥平面APC.又AP?平面APC,所以AP⊥BC,故C正確;D中,由A知D正確;B中條件不能判斷出AP⊥BC,故選B. 答案:B 4.已知α,β表示兩個(gè)不同平面,a,b表示兩條不同直線,對(duì)于下列兩個(gè)命題: ①若b?α,a?α,則“a∥b”是“a∥α”的充分不必要條件; ②若a?α,b?α,則“α∥β”是“a∥β且b∥β”的充要條件. 判斷

4、正確的是(  ) A.①②都是真命題 B.①是真命題,②是假命題 C.①是假命題,②是真命題 D.①②都是假命題 解析:若b?α,a?α,a∥b,則由線面平行的判定定理可得a∥α,反過來,若b?α,a?α,a∥α,則a,b可能平行或異面,則b?α,a?α,“a∥b”是“a∥α”的充分不必要條件,①是真命題;若a?α,b?α,α∥β,則由面面平行的性質(zhì)可得a∥β,b∥β,反過來,若a?α,b?α,a∥β,b∥β,則α,β可能平行或相交,則a?α,b?α,則“α∥β”是“a∥β,b∥β”的充分不必要條件,②是假命題,選項(xiàng)B正確. 答案:B 5.如圖是一幾何體的平面展開圖,其中四邊

5、形ABCD為正方形,E,F(xiàn)分別為PA,PD的中點(diǎn),在此幾何體中,給出下面4個(gè)結(jié)論: ①直線BE與直線CF異面; ②直線BE與直線AF異面; ③直線EF∥平面PBC; ④平面BCE⊥平面PAD. 其中正確的有(  ) A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 解析:將展開圖還原為幾何體(如圖),因?yàn)镋,F(xiàn)分別為PA,PD的中點(diǎn),所以EF∥AD∥BC,即直線BE與CF共面,①錯(cuò);因?yàn)锽?平面PAD,E∈平面PAD,E?AF,所以BE與AF是異面直線,②正確;因?yàn)镋F∥AD∥BC,EF?平面PBC,BC?平面PBC,所以EF∥平面PBC,③正確;平面PAD與平面BCE不一定垂直,④

6、錯(cuò).故選B. 答案:B 6.在下列四個(gè)正方體中,能得出異面直線AB⊥CD的是(  ) 解析:對(duì)于A,作出過AB的平面ABE,如圖①,可得直線CD與平面ABE垂直,根據(jù)線面垂直的性質(zhì)知,AB⊥CD成立,故A正確;對(duì)于B,作出過AB的等邊三角形ABE,如圖②,將CD平移至AE,可得CD與AB所成的角等于60°,故B不成立;對(duì)于C、D,將CD平移至經(jīng)過點(diǎn)B的側(cè)棱處,可得AB,CD所成的角都是銳角,故C和D均不成立.故選A. 答案:A 7.(2018·貴陽一中適應(yīng)性考試)已知l為平面α內(nèi)的一條直線,α,β表示兩個(gè)不同的平面,則“α⊥β ”是“l(fā)⊥β ”的(  ) A.充分不必要條件

7、 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 解析:若l為平面α內(nèi)的一條直線且l⊥β,則α⊥β,反過來則不一定成立,所以“α⊥β”是“l(fā)⊥β”的必要不充分條件,故選B. 答案:B 8.(2018·廣州模擬)用a,b,c表示空間中三條不同的直線,γ表示平面,給出下列命題: ①若a⊥b,b⊥c,則a∥c;②若a∥b,a∥c,則b∥c; ③若a∥γ,b∥γ,則a∥b;④若a⊥γ,b⊥γ,則a∥b. 其中真命題的序號(hào)是(  ) A.①②       B.②③ C.①④ D.②④ 解析:對(duì)于①,正方體從同一頂點(diǎn)引出的三條直線a,b,c,滿足a⊥b,b⊥c,但是a

8、⊥c,所以①錯(cuò)誤; 對(duì)于②,若a∥b,a∥c,則b∥c,滿足平行線公理,所以②正確; 對(duì)于③,平行于同一平面的兩條直線的位置關(guān)系可能是平行、相交或者異面,所以③錯(cuò)誤; 對(duì)于④,由垂直于同一平面的兩條直線平行,知④正確.故選D. 答案:D 9.(2018·菏澤模擬)如圖所示的三棱柱ABC-A1B1C1中,過A1B1的平面與平面ABC交于DE,則DE與AB的位置關(guān)系是(  ) A.異面 B.平行 C.相交 D.以上均有可能 解析:在三棱柱ABC-A1B1C1中,AB∥A1B1, ∵AB?平面ABC,A1B1?平面ABC, ∴A1B1∥平面ABC, ∵過A1B1的平面與平面

9、ABC交于DE, ∴DE∥A1B1,∴DE∥AB.故選B. 答案:B 10.(2018·貴陽模擬)如圖,在正方形ABCD中,E,F(xiàn)分別是BC,CD的中點(diǎn),沿AE,AF,EF把正方形折成一個(gè)四面體,使B,C,D三點(diǎn)重合,重合后的點(diǎn)記為P,P點(diǎn)在△AEF內(nèi)的射影為O,則下列說法正確的是(  ) A.O是△AEF的垂心 B.O是△AEF的內(nèi)心 C.O是△AEF的外心 D.O是△AEF的重心 解析:由題意可知PA、PE、PF兩兩垂直, 所以PA⊥平面PEF,從而PA⊥EF, 而PO⊥平面AEF,則PO⊥EF,因?yàn)镻O∩PA=P, 所以EF⊥平面PAO, ∴EF⊥AO,同理可知A

10、E⊥FO,AF⊥EO, ∴O為△AEF的垂心.故選A. 答案:A 11.已知點(diǎn)E,F(xiàn)分別是正方體ABCD-A1B1C1D1的棱AB,AA1的中點(diǎn),點(diǎn)M,N分別是線段D1E與C1F上的點(diǎn),則滿足與平面ABCD平行的直線MN有(  ) A.0條         B.1條 C.2條 D.無數(shù)條 解析:如圖所示,作平面KSHG∥平面ABCD,C1F,D1E交平面KSHG于點(diǎn)N,M,連接MN,由面面平行的性質(zhì)得MN∥平面ABCD,由于平面KSHG有無數(shù)多個(gè),所以平行于平面ABCD的MN有無數(shù)多條,故選D. 答案:D 12.如圖,在矩形ABCD中,AB=2AD,E為邊AB的中點(diǎn),

11、將△ADE沿直線DE翻折成△A1DE.若M為線段A1C的中點(diǎn),則在△ADE翻折過程中,下面四個(gè)命題中不正確的是(  ) A.BM是定值 B.點(diǎn)M在某個(gè)球面上運(yùn)動(dòng) C.存在某個(gè)位置,使DE⊥A1C D.MB∥平面A1DE 解析:取CD的中點(diǎn)F,連接MF,BF,AF(圖略),則MF∥DA1,BF∥DE,∴平面MBF∥平面A1DE,∴MB∥平面A1DE,故D正確. ∵∠A1DE=∠MFB,MF=A1D,F(xiàn)B=DE,由余弦定理可得MB2=MF2+FB2-2MF·FB·cos∠MFB,∴MB是定值,故A正確.∵B是定點(diǎn),BM是定值,∴M在以B為球心,MB為半徑的球上,故B正確.∵A1C在

12、平面ABCD中的射影是點(diǎn)C與AF上某點(diǎn)的連線,不可能與DE垂直,∴不存在某個(gè)位置,使DE⊥A1C.故選C. 答案:C 二、填空題 13.如圖,在正方體ABCD-A1B1C1D1中,M,N分別為棱C1D1,C1C的中點(diǎn),有以下四個(gè)結(jié)論: ①直線AM與CC1是相交直線; ②直線AM與BN是平行直線; ③直線BN與MB1是異面直線; ④直線MN與AC所成的角為60°. 其中正確的結(jié)論為________(把你認(rèn)為正確結(jié)論的序號(hào)都填上). 解析:AM與CC1是異面直線,AM與BN是異面直線,BN與MB1為異面直線.因?yàn)镈1C∥MN,所以直線MN與AC所成的角就是D1C與AC所成的角,為

13、60°. 答案:③④ 14.如圖是一個(gè)正方體的平面展開圖.在這個(gè)正方體中,①BM與ED是異面直線;②CN與BE平行;③CN與BM成60°角;④DM與BN垂直. 以上四個(gè)命題中,正確命題的序號(hào)是________. 解析:由題意畫出該正方體的圖形如圖所示,連接BE,BN,顯然①②正確;對(duì)于③,連接AN,易得AN∥BM,∠ANC=60°,所以CN與BM成60°角,所以③正確;對(duì)于④,易知DM⊥平面BCN,所以DM⊥BN正確. 答案:①②③④ 15.如圖,PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上的一點(diǎn),E,F(xiàn)分別是點(diǎn)A在PB,PC上的射影,給出下列結(jié)論: ①AF⊥PB;

14、②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正確命題的序號(hào)是________. 解析:∵PA⊥⊙O所在的平面,AB是⊙O的直徑, ∴CB⊥PA,CB⊥AC,又PA∩AC=A, ∴CB⊥平面PAC.又AF?平面PAC,∴CB⊥AF. 又∵F是點(diǎn)A在PC上的射影, ∴AF⊥PC,又PC∩BC=C,PC,BC?平面PBC, ∴AF⊥平面PBC, 故①③正確.又∵E為A在PB上的射影, ∴AE⊥PB, ∴PB⊥平面AEF,故②正確. 而AF⊥平面PCB, ∴AE不可能垂直于平面PBC. 故④錯(cuò). 答案:①②③ 16.如圖所示,在四棱錐PABCD中,∠ABC=∠BA

15、D=90°,BC=2AD,△PAB和△PAD都是等邊三角形,則異面直線CD與PB所成角的大小為________. 解析:如圖所示,延長DA至E,使AE=DA,連接PE,BE. ∵∠ABC=∠BAD=90°,BC=2AD, ∴DE=BC,DE∥BC. ∴四邊形CBED為平行四邊形,∴CD∥BE. ∴∠PBE就是異面直線CD與PB所成的角. 在△PAE中,AE=PA,∠PAE=120°,由余弦定理,得 PE= = =AE. 在△ABE中,AE=AB,∠BAE=90°, ∴BE=AE. ∵△PAB是等邊三角形,∴PB=AB=AE, ∴PB2+BE2=AE2+2A

16、E2=3AE2=PE2, ∴∠PBE=90°. 答案:90° B組 大題規(guī)范練 1.(2018·臨沂模擬)如圖①,在矩形ABCD中,AB=,BC=4,E是邊AD上一點(diǎn),且AE=3,把△ABE沿BE翻折,使得點(diǎn)A到A′滿足平面A′BE與平面BCDE垂直(如圖②). (1)若點(diǎn)P在棱A′C上,且CP=3PA′,求證:DP∥平面A′BE; (2)求二面角B-A′E-D的余弦值的大?。? 解析:(1)證明:過P作PQ∥BC交A′B于點(diǎn)Q.如圖所示. 因?yàn)镃P=3PA′,所以==, 因?yàn)锽C=4,所以PQ=1, 因?yàn)镈E∥BC,DE=1,所以DE綊PQ, 所以四邊形QEDP為平行

17、四邊形, 所以DP∥EQ. 因?yàn)镈P?平面A′BE,EQ?平面A′BE,所以DP∥平面A′BE. (2)如圖,過A′作A′F⊥BE于點(diǎn)F, 因?yàn)槠矫鍭′BE⊥平面BCDE. 所以A′F⊥平面BCDE. 因?yàn)椤螧A′E=90°,A′B=,A′E=3, 所以∠A′EB=30°,A′F=,EF=, 過F作FG⊥DE交DE的延長線于點(diǎn)G,則FG=,EG=. 如圖,建立空間直角坐標(biāo)系,D(0,0,0),E(1,0,0),B(4,,0),C(0,,0),A′,F(xiàn),則=,=,=(1,0,0). 設(shè)平面A′BE的法向量n=(x,y,z), 則 即 可取n=(1,-,0). 設(shè)平

18、面A′DE的法向量m=(x1,y1,z1), 則 即 可取m=(0,2,-). 所以cos〈m,n〉==-. 因?yàn)槎娼荁-A′E-D為鈍角, 所以二面角B-A′E-D的余弦值的大小為-. 2.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PB上,PD∥平面MAC,PA=PD=,AB=4. (1)求證:M為PB的中點(diǎn); (2)求二面角B-PD-A的大??; (3)求直線MC與平面BDP所成角的正弦值. 解析:(1)證明:如圖,設(shè)AC,BD的交點(diǎn)為E,連接ME. 因?yàn)镻D∥平面MAC, 平面MAC∩平面PDB=ME, 所以P

19、D∥ME. 因?yàn)榈酌鍭BCD是正方形, 所以E為BD的中點(diǎn). 所以M為PB的中點(diǎn). (2)取AD的中點(diǎn)O,連接OP,OE. 因?yàn)镻A=PD,所以O(shè)P⊥AD. 又因?yàn)槠矫鍼AD⊥平面ABCD,平面PAD∩平面ABCD=AD,OP?平面PAD, 所以O(shè)P⊥平面ABCD. 因?yàn)镺E?平面ABCD,所以O(shè)P⊥OE. 因?yàn)榈酌鍭BCD是正方形,所以O(shè)E⊥AD. 以O(shè)為原點(diǎn),以,,為x軸,y軸,z軸的正方向建立如圖所示的空間直角坐標(biāo)系O-xyz, 則P(0,0,),D(2,0,0),B(-2,4,0), =(4,-4,0),=(2,0,-). 設(shè)平面BDP的一個(gè)法向量為n=(x,

20、y,z), 則即 令x=1,得y=1,z=. 于是n=(1,1,). 又平面PAD的一個(gè)法向量為p=(0,1,0), 所以cos〈n,p〉==. 由題知二面角B-PD-A為銳角, 所以二面角B-PD-A的大小為60°. (3)由題意知M,C(2,4,0),則=. 設(shè)直線MC與平面BDP所成角為α, 則sin α=|cos〈n,〉|==. 所以直線MC與平面BDP所成角的正弦值為. 3.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1. (1)求證:AD⊥平面BFED; (2)點(diǎn)P

21、在線段EF上運(yùn)動(dòng),設(shè)平面PAB與平面ADE所成銳二面角為θ,試求θ的最小值. 解析:(1)證明:在梯形ABCD中, ∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2. ∴BD2=AB2+AD2-2AB·AD·cos 60°=3. ∴AB2=AD2+BD2,∴AD⊥BD. ∵平面BFED⊥平面ABCD, 平面BFED∩平面ABCD=BD, DE?平面BFED,DE⊥DB, ∴DE⊥平面ABCD, ∴DE⊥AD,又DE∩BD=D, ∴AD⊥平面BFED. (2)由(1)知,直線AD,BD,ED兩兩垂直,故以D為原點(diǎn),直線DA,DB,DE分別為x軸,y軸,z軸

22、建立如圖所示的空間直角坐標(biāo)系,令EP=λ(0≤λ≤),則D(0,0,0),A(1,0,0),B(0,,0),P(0,λ,1), ∴=(-1,,0),=(0,λ-,1). 設(shè)n1=(x,y,z)為平面PAB的法向量, 由得 取y=1,則n1=(,1,-λ). ∵n2=(0,1,0)是平面ADE的一個(gè)法向量, ∴cos θ== =. ∵0≤λ≤,∴當(dāng)λ=時(shí),cos θ有最大值,∴θ的最小值為60°. 4.在三棱錐P-ABC中,PA=PB=PC=2,BC=1,AC=,AC⊥BC. (1)求點(diǎn)B到平面PAC的距離. (2)求異面直線PA與BC所成角的余弦值. 解析:(1)以C為

23、原點(diǎn),CA為x軸,CB為y軸,過C作平面ABC的垂線為z軸,建立空間直角坐標(biāo)系, 取AB的中點(diǎn)D,連接PD,DC, 因?yàn)椤鰽CB為直角三角形且AC=,BC=1, 所以AB=2,故DC=1, 所以△PAB為正三角形, 所以PD⊥AB且PD=, 在△PDC中,PC=2,PD=,DC=1, 所以PC2=PD2+DC2, 所以PD⊥DC,又AB∩DC=D, 所以PD⊥平面ABC. 則A(,0,0),B(0,1,0),D,P,C(0,0,0),=(,0,0),=,=,=(0,1,0), 設(shè)平面PAC的法向量n=(x,y,z), 則 取y=2,得n=(0,2,-1), 所以

24、點(diǎn)B到平面PAC的距離 d===. (2)=,=(0,-1,0), 設(shè)異面直線PA與BC所成角為θ, cos θ===. 所以異面直線PA與BC所成角的余弦值為. (二) A組 小題提速練 一、選擇題 1.某幾何體的三視圖如圖所示,則該幾何體的體積為(  ) A.6          B.3 C.2 D.3 解析:由三視圖可知,該幾何體是一個(gè)直三棱柱,其底面為側(cè)視圖,該側(cè)視圖是底邊為2,高為的三角形,正視圖的長為三棱柱的高,故h=3,所以幾何體的體積V=S·h=×3=3. 答案:B 2.某個(gè)幾何體的三視圖如圖所示,其中正視圖中的圓弧是半徑為2的半圓,則該

25、幾何體的表面積為(  ) A.92+24π B.82+24π C.92+14π D.82+14π 解析:依題意,題中的幾何體是在一個(gè)長方體的上表面放置了半個(gè)圓柱,其中長方體的長、寬、高分別是5、4、4,圓柱的底面半徑是2,高是5,因此該幾何體的表面積等于3×(4×5)+2×(4×4)+π×22+×(2π×2)×5=92+14π,故選C. 答案:C 3.如圖,在正四棱柱ABCD-A1B1C1D1中,點(diǎn)P是平面A1B1C1D1內(nèi)一點(diǎn),則三棱錐P-BCD的正視圖與側(cè)視圖的面積之比為(  ) A.1∶1 B.2∶1 C.2∶3 D.3∶2 解析:由題意可得正視圖的面積等

26、于矩形ADD1A1面積的,側(cè)視圖的面積等于矩形CDD1C1面積的,又底面ABCD是正方形,所以矩形ADD1A1與矩形CDD1C1的面積相等,即正視圖與側(cè)視圖的面積之比是1∶1,故選A. 答案:A 4.已知A,B是球O的球面上兩點(diǎn),∠AOB=90°,C為該球面上的動(dòng)點(diǎn).若三棱錐OABC體積的最大值為36,則球O的表面積為(  ) A.36π B.64π C.144π D.256π 解析:如圖,設(shè)點(diǎn)C到平面OAB的距離為h,球O的半徑為R,因?yàn)椤螦OB=90°,所以S△OAB=R2,要使VO-ABC=·S△OAB·h最大,則OA,OB,OC應(yīng)兩兩垂直,且(VO-ABC)max=×R2

27、×R=R3=36,此時(shí)R=6,所以球O的表面積為S球=4πR2=144π.故選C. 答案:C 5.在封閉的直三棱柱ABC-A1B1C1內(nèi)有一個(gè)體積為V的球.若AB⊥BC,AB=6,BC=8,AA1=3,則V的最大值是(  ) A.4π B. C.6π D. 解析:由題意可得若V最大,則球與直三棱柱的部分面相切,若與三個(gè)側(cè)面都相切,可求得球的半徑為2,球的直徑為4,超過直三棱柱的高,所以這個(gè)球放不進(jìn)去,則球可與上下底面相切,此時(shí)球的半徑R=,該球的體積最大,Vmax=πR3=×=. 答案:B 6.已知三棱錐SABC的所有頂點(diǎn)都在球O的球面上,△ABC是邊長為1的正三角形,

28、SC為球O的直徑,且SC=2,則此棱錐的體積為(  ) A. B. C. D. 解析:在直角三角形ASC中,AC=1,∠SAC=90°,SC=2,所以SA==;同理SB=.過A點(diǎn)作SC的垂線交SC于D點(diǎn),連接DB(圖略),因?yàn)椤鱏AC≌△SBC,所以BD⊥SC,故SC⊥平面ABD,且平面ABD為等腰三角形,因?yàn)椤螦SC=30°,所以AD=SA=,則△ABD的面積為×1× =,則三棱錐的體積為××2=. 答案:A 7.四棱錐SABCD的所有頂點(diǎn)都在同一個(gè)球面上,底面ABCD是正方形且和球心O在同一平面內(nèi),當(dāng)此四棱錐體積取得最大值時(shí),其表面積等于8+8,則球O的體積等于(  )

29、 A. B. C.16π D. 解析:依題意,設(shè)球O的半徑為R,四棱錐SABCD的底面邊長為a、高為h,則有h≤R,即h的最大值是R,又AC=2R,則四棱錐SABCD的體積VSABCD=×2R2h≤.因此,當(dāng)四棱錐SABCD的體積最大,即h=R時(shí),其表面積等于(R)2+4××R× =8+8,解得R=2,因此球O的體積等于=,選A. 答案:A 8.已知三棱錐PABC的所有頂點(diǎn)都在球O的球面上,△ABC是邊長為1的正三角形,PC為球O的直徑,該三棱錐的體積為,則球O的表面積為(  ) A.4π B.8π C.12π D.16π 解析:依題意,設(shè)球O的半徑為R,

30、球心O到平面ABC的距離為d,則由O是PC的中點(diǎn)得,點(diǎn)P到平面ABC的距離等于2d,所以VP-ABC=2VO-ABC=2×S△ABC×d=××12×d=,解得d=,又R2=d2+()2=1,所以球O的表面積等于4πR2=4π,選A. 答案:A 9.已知Rt△ABC,其三邊長分別為a,b,c(a>b>c).分別以三角形的邊a,b,c所在直線為軸,其余各邊旋轉(zhuǎn)一周形成的曲面圍成三個(gè)幾何體,其表面積和體積分別為S1,S2,S3和V1,V2,V3.則它們的關(guān)系為(  ) A.S1>S2>S3,V1>V2>V3 B.S1S2>S3,V1=V2=V3

31、D.S1b>c,可得S1

32、已知點(diǎn)A,B,C,D在同一個(gè)球的球面上,AB=BC=,AC=2,若四面體ABCD體積的最大值為,則這個(gè)球的表面積為(  ) A. B.8π C. D. 解析:∵AB=BC=,AC=2,∴△ABC是直角三角形,∴△ABC的外接圓的圓心為邊AC的中點(diǎn)O1,如圖所示,若使四面體ABCD體積取得最大值只需使點(diǎn)D到平面ABC的距離最大,又OO1⊥平面ABC,∴點(diǎn)D是直線OO1與球上方的交點(diǎn)時(shí)體積最大.設(shè)球的半徑為R,則由體積公式有O1D=2.在Rt△AOO1中,R2=1+(2-R)2,解得R=,故球的表面積S=,故選C. 答案:C 12.如圖,在棱長為1的正方體ABCD-A1B1C1D1

33、中,點(diǎn)E,F(xiàn)分別是棱BC,CC1的中點(diǎn),P是側(cè)面BCC1B1內(nèi)一點(diǎn),若A1P∥平面AEF,則線段A1P長度的取值范圍是(  ) A. B. C. D. 解析:取B1C1的中點(diǎn)M,BB1的中點(diǎn)N,連接A1M,A1N,MN,則平面A1MN∥平面AEF,所以點(diǎn)P位于線段MN上.在△A1MN中,A1M=A1N= =,MN==.當(dāng)點(diǎn)P位于點(diǎn)M,N時(shí),A1P最大,為;當(dāng)點(diǎn)P位于MN的中點(diǎn)時(shí),A1P最小,為=,所以≤A1P≤. 答案:B 二、填空題 13.若圓錐的側(cè)面積是底面積的3倍,則其母線與軸所成角的正弦值為________. 解析:設(shè)圓錐的高為h,底面半徑為r,母線與軸所

34、成角為θ,則S側(cè)=·2πr·,S底=πr2,因?yàn)镾側(cè)=3S底,所以πr·=3πr2,得=3r,即8r2=h2,所以tan θ=,sin θ=. 答案: 14.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,且底面邊長與側(cè)棱長都等于3.螞蟻從A點(diǎn)沿側(cè)面經(jīng)過棱BB1上的點(diǎn)N和CC1上的點(diǎn)M爬到點(diǎn)A1,如圖所示,則螞蟻爬過的路程最短為________. 解析:將三棱柱ABC-A1B1C1的側(cè)面展開如圖所示,則有A′A′1=3,AA′1==3.所以螞蟻爬過的路程最短為AA′1. 答案:3 15.如圖所示,正方體ABCD-A1B1C1D1的棱長為a,點(diǎn)P是棱AD上一點(diǎn),且AP=,過B1

35、、D1,P的平面交底面ABCD于PQ,Q在直線CD上,則PQ=________. 解析:∵平面A1B1C1D1∥平面ABCD,而平面B1D1P∩平面ABCD=PQ,平面B1D1P∩平面A1B1C1D1=B1D1,∴B1D1∥PQ. 又∵B1D1∥BD,∴BD∥PQ, 設(shè)PQ∩AB=M,∵AB∥CD,∴△APM∽△DPQ. ∴==,即PQ=2PM. 又知△APM∽△ADB,∴==, ∴PM=BD,又BD=a,∴PQ=a. 答案:a 16.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn).若平面PAD⊥平面ABCD,PA=PD=AD=2,點(diǎn)

36、M在線段PC上,且PM=2MC,則四棱錐P-ABCD與三棱錐P-QBM的體積之比是________. 解析:過點(diǎn)M作MH∥BC交PB于點(diǎn)H. ∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD, ∴PQ⊥平面ABCD. ∵PA=PD=AD=AB=2,∠BAD=60°, ∴PQ=BQ=. ∴VP-ABCD=PQ·S菱形ABCD=××2×=2. 又PQ⊥BC,BQ⊥AD,AD∥BC. ∴BQ⊥BC,又QB∩QP=Q, ∴BC⊥平面PQB,由MH∥BC, ∴MH⊥平面PQB,==, ∵BC=2,∴MH=, ∴VP-QBM=VM-PQB=××××=, ∴V

37、P-ABCD∶VP-QBM=3∶1. 答案:3∶1 B組 大題規(guī)范練 1.如圖,在正方體ABCD-A1B1C1D1中,AA1=2,E為棱CC1的中點(diǎn). (1)求證:B1D1⊥AE; (2)求證:AC∥平面B1DE. 證明:(1)連接BD, 則BD∥B1D1. ∵四邊形ABCD是正方形, ∴AC⊥BD. ∵CE⊥平面ABCD, ∴CE⊥BD. 又AC∩CE=C, ∴BD⊥平面ACE. ∵AE?平面ACE,∴BD⊥AE,∴B1D1⊥AE. (2)取BB1的中點(diǎn)F,連接AF,CF,EF, 則FC∥B1E, ∴CF∥平面B1DE. ∵E,F(xiàn)是CC1,

38、BB1的中點(diǎn),∴EF綊BC. 又BC綊AD,∴EF綊AD, ∴四邊形ADEF是平行四邊形,∴AF∥ED. ∵AF?平面B1DE,ED?平面B1DE, ∴AF∥平面B1DE. ∵AF∩CF=F,∴平面ACF∥平面B1DE. 又∵AC?平面ACF,∴AC∥平面B1DE. 2.如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=,O,M分別為AB,VA的中點(diǎn). (1)求證:VB∥平面MOC; (2)求證:平面MOC⊥平面VAB; (3)求三棱錐V-ABC的體積. 解析:(1)證明:因?yàn)镺,M分別為AB,VA的中點(diǎn), 所以O(shè)M∥VB

39、. 又因?yàn)閂B?平面MOC,所以VB∥平面MOC. (2)證明:因?yàn)锳C=BC,O為AB的中點(diǎn), 所以O(shè)C⊥AB. 又因?yàn)槠矫鎂AB⊥平面ABC,且OC?平面ABC, 所以O(shè)C⊥平面VAB. 所以平面MOC⊥平面VAB. (3)在等腰直角三角形ACB中,AC=BC=, 所以AB=2,OC=1. 所以等邊三角形VAB的面積S△VAB=. 又因?yàn)镺C⊥平面VAB, 所以三棱錐C-VAB的體積等于OC·S△VAB=. 又因?yàn)槿忮FV-ABC的體積與三棱錐C-VAB的體積相等,所以三棱錐V-ABC的體積為. 3.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠DAB=60

40、°,PD⊥平面ABCD,PD=AD=1,點(diǎn)E,F(xiàn)分別為AB和PD的中點(diǎn). (1)求證:直線AF∥平面PEC; (2)求三棱錐P-BEF的表面積. 解析:(1)證明:作FM∥CD交PC于M,連接ME. ∵點(diǎn)F為PD的中點(diǎn),∴FM綊CD, 又AE綊CD,∴AE綊FM, ∴四邊形AEMF為平行四邊形,∴AF∥EM, ∵AF?平面PEC,EM?平面PEC, ∴直線AF∥平面PEC. (2)連接ED,BD,可知ED⊥AB, ???AB⊥PE,AB⊥FE, 故S△PEF=PF·ED=××=; S△PBF=PF·BD=××1=; S△PBE=PE·BE=××=; S△BE

41、F=EF·EB=×1×=. 因此三棱錐P-BEF的表面積SP-BEF=S△PEF+S△PBF+S△PBE+S△BEF=. 4.如圖,在單位正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AD,BC1的中點(diǎn). (1)求證:EF∥平面C1CDD1; (2)在線段A1B上是否存在點(diǎn)G,使EG⊥平面A1BC1?若存在,求點(diǎn)G到平面C1DF的距離;若不存在,請(qǐng)說明理由. 解析:(1)證明:取BC的中點(diǎn)M,連接EM,F(xiàn)M, ∵E,F(xiàn)分別是AD,BC1的中點(diǎn), ∴EM∥DC,F(xiàn)M∥C1C, EM?平面EFM,F(xiàn)M?平面EFM,EM∩FM=M, DC?平面C1CDD1,C1C?平面C1C

42、DD1,DC∩C1C=C, ∴平面EFM∥平面C1CDD1,而EF?平面EFM, ∴EF∥平面C1CDD1. (2)取A1B的中點(diǎn)G,連接EG,EA1,EB,易知EA1=EB,而G為中點(diǎn),∴EG⊥A1B. 連接FG,則FG∥A1C1, ∵正方體棱長為1, 在△A1BC1中,F(xiàn)G=A1C1=. 在Rt△FME中,EF=,在Rt△EAG中,EG=, ∴FG2+EG2=FE2,即EG⊥FG,故EG⊥A1C1, 又A1B,A1C1?平面A1BC1,A1B∩A1C1=A1, ∴EG⊥平面A1BC1. 點(diǎn)G到平面C1DF的距離就是點(diǎn)G到平面C1DB的距離. ∵GA∥C1D,∴GA∥平面C1DB, ∴點(diǎn)G到平面C1DB的距離就是點(diǎn)A到平面C1DB的距離.易知S△BDC1=,S△ABD=, 點(diǎn)C1到平面ABD的距離為1, 設(shè)點(diǎn)G到平面C1DF的距離為d, 由VC1-ABD=VA-BDC1得×1×S△ABD=·d·S△BDC1, 即=d·,∴d=, 即點(diǎn)G到平面C1DF的距離為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!