【高考前三個月復習數(shù)學理科 三角函數(shù)與平面向量】專題4 第18練
《【高考前三個月復習數(shù)學理科 三角函數(shù)與平面向量】專題4 第18練》由會員分享,可在線閱讀,更多相關《【高考前三個月復習數(shù)學理科 三角函數(shù)與平面向量】專題4 第18練(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第18練 三角函數(shù)的圖象與性質(zhì) [題型分析高考展望] 三角函數(shù)的圖象與性質(zhì)是高考中對三角函數(shù)部分考查的重點和熱點,主要包括三個大的方面:三角函數(shù)圖象的識別,三角函數(shù)的簡單性質(zhì)以及三角函數(shù)圖象的平移、伸縮變換.考查題型既有選擇題、填空題,也有解答題,難度一般為低中檔,在二輪復習中應強化該部分的訓練,爭取對該類試題會做且不失分. 常考題型精析 題型一 三角函數(shù)的圖象 例1 (1)(2015課標全國Ⅰ)函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞減區(qū)間為( ) A.,k∈Z B.,k∈Z C.,k∈Z D.,k∈Z (2)(2014湖北)某實驗室一天的溫度(單位:℃)隨時間t(單位:h)的變化近似滿足函數(shù)關系: f(t)=10-cost-sint,t∈[0,24). ①求實驗室這一天上午8時的溫度; ②求實驗室這一天的最大溫差. 點評 (1)畫三角函數(shù)圖象用“五點法”,由圖象求函數(shù)解析式逆用“五點法”是比較好的方法. (2)對三角函數(shù)圖象主要確定下列信息:①周期;②最值;③對稱軸;④與坐標軸交點;⑤單調(diào)性;⑥與標準曲線的對應關系. 變式訓練1 已知函數(shù)f(x)=2sin(ωx+φ)(其中ω>0,|φ|<)的最小正周期是π,且f(0)=,則( ) A.ω=,φ= B.ω=,φ= C.ω=2,φ= D.ω=2,φ= (2)已知函數(shù)f(x)=Asin(ωx+φ) (A>0,|φ|<,ω>0)的圖象的一部分如圖所示,則該函數(shù)的解析式為____________. 題型二 三角函數(shù)的簡單性質(zhì) 例2 設函數(shù)f(x)=-sin2ωx-sin ωxcos ωx(ω>0),且y=f(x)圖象的一個對稱中心到最近的對稱軸的距離為. (1)求ω的值; (2)求f(x)在區(qū)間上的最大值和最小值. 點評 解決此類問題首先將已知函數(shù)式化為y=Asin(ωx+φ)+k(或y=Acos(ωx+φ)+k)的形式,再將ωx+φ看成θ, 利用y=sin θ(或y=cos θ)的單調(diào)性、對稱性等性質(zhì)解決相關問題. 變式訓練2 (2014福建)已知函數(shù)f(x)=cos x(sin x+cos x)-. (1)若0<α<,且sin α=,求f(α)的值; (2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間. 題型三 三角函數(shù)圖象的變換 例3 已知函數(shù)f(x)=10sin cos +10cos2. (1)求函數(shù)f(x)的最小正周期; (2)將函數(shù)f(x)的圖象向右平移個單位長度,再向下平移a(a>0)個單位長度后得到函數(shù)g(x)的圖象,且函數(shù)g(x)的最大值為2. ①求函數(shù)g(x)的解析式; ②證明:存在無窮多個互不相同的正整數(shù)x0,使得g(x0)>0. 點評 對于三角函數(shù)圖象變換問題,平移變換規(guī)則是“左加右減上加下減”并且在變換過程中只變換其中的自變量x,要把這個系數(shù)提取后再確定變換的單位和方向,當兩個函數(shù)的名稱不同時,首先要將函數(shù)名稱統(tǒng)一,其次把ωx+φ寫成ω(x+),最后確定平移的單位和方向.伸縮變換時注意敘述為“變?yōu)樵瓉淼摹边@個字眼,變換的倍數(shù)要根據(jù)橫向和縱向,要加以區(qū)分. 變式訓練3 (2014山東)已知向量a=(m,cos 2x),b=(sin 2x,n), 函數(shù)f(x)=ab,且y=f(x)的圖象過點(,)和點(,-2). (1)求m,n的值; (2)將y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)y=g(x)的圖象,若y=g(x)圖象上各最高點到點(0,3)的距離的最小值為1,求y=g(x)的單調(diào)遞增區(qū)間. 高考題型精練 1.(2015四川)下列函數(shù)中,最小正周期為π且圖象關于原點對稱的函數(shù)是( ) A.y=cos B.y=sin C.y=sin 2x+cos 2x D.y=sin x+cos x 2.(2014福建)將函數(shù)y=sin x的圖象向左平移個單位,得到函數(shù)y=f(x)的圖象,則下列說法正確的是( ) A.y=f(x)是奇函數(shù) B.y=f(x)的周期為π C.y=f(x)的圖象關于直線x=對稱 D.y=f(x)的圖象關于點(-,0)對稱 3.已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分圖象如圖所示,則f()等于( ) A.- B.-1 C. D.1 4.(2014遼寧)將函數(shù)y=3sin(2x+)的圖象向右平移個單位長度,所得圖象對應的函數(shù)( ) A.在區(qū)間[,]上單調(diào)遞減 B.在區(qū)間[,]上單調(diào)遞增 C.在區(qū)間[-,]上單調(diào)遞減 D.在區(qū)間[-,]上單調(diào)遞增 5.將函數(shù)f(x)=-4sin的圖象向右平移φ個單位,再將圖象上每一點的橫坐標縮短到原來的倍,所得圖象關于直線x=對稱,則φ的最小正值為( ) A. B.π C.π D. 6.函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<)的部分圖象如圖所示,則將y=f(x)的圖象向右平移個單位后,得到的圖象的解析式為( ) A.y=sin 2x B.y=cos 2x C.y=sin D.y=sin 7.若函數(shù)f(x)=cos(2x+φ)的圖象關于點成中心對稱,且-<φ<,則函數(shù)y=f 為( ) A.奇函數(shù)且在上單調(diào)遞增 B.偶函數(shù)且在上單調(diào)遞增 C.偶函數(shù)且在上單調(diào)遞減 D.奇函數(shù)且在上單調(diào)遞減 8.(2015湖北)函數(shù)f(x)=4cos2cos-2sin x-|ln(x+1)|的零點個數(shù)為________. 9.函數(shù)y=cos(2x+φ)(-π≤φ<π)的圖象向右平移個單位后,與函數(shù)y=sin的圖象重合,則φ=____________. 10.(2015湖北)某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表: ωx+φ 0 π 2π x Asin(ωx+φ) 0 5 -5 0 (1) 請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應位置,并直接寫出函數(shù)f(x)的解析式; (2) 將y=f(x)圖象上所有點向左平行移動個單位長度,得到y(tǒng)=g(x)的圖象,求y=g(x)的圖象離原點O最近的對稱中心. 11.(2014重慶)已知函數(shù)f(x)=sin(ωx+φ)(ω>0,-≤φ<)的圖象關于直線x=對稱,且圖象上相鄰兩個最高點的距離為π. (1)求ω和φ的值; (2)若f()=(<α<),求cos(α+)的值. 12.(2015重慶)已知函數(shù)f(x)=sinsin x-cos2x. (1)求f(x)的最小正周期和最大值; (2)討論f(x)在上的單調(diào)性. 答案精析 第18練 三角函數(shù)的圖象與性質(zhì) 常考題型精析 例1 D [由圖象知, 周期T=2=2,∴=2,∴ω=π. 由π+φ=+2kπ,k∈Z,不妨取φ=, ∴f(x)=cos. 由2kπ<πx+<2kπ+π,k∈Z,得2k-- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高考前三個月復習數(shù)學理科 三角函數(shù)與平面向量 【高考前三個月復習數(shù)學理科 三角函數(shù)與平面向量】專題4 第18練 考前 三個月 復習 數(shù)學 理科 三角函數(shù) 平面 向量 專題 18
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
相關資源
更多
正為您匹配相似的精品文檔
鏈接地址:http://www.szxfmmzy.com/p-11144090.html