《高中數(shù)學 向量的加法教案 湘教版必修2》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學 向量的加法教案 湘教版必修2(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第二教時 向量的加法
目的:1、理解向量加法的意義
2、理解向量加法三角形法則、平行四邊形法則和多邊形法則
作幾個向量的和向量。
3、理解向量加法的運算律:交換律和結(jié)合律
4、數(shù)形結(jié)合的數(shù)學思想方法。
學習重點:向量加法三角形法則、平行四邊形法則和多邊形法則
學習難點:向量加法三角形法則、平行四邊形法則和多邊形法則及作圖方法
學習過程:
一、 情景導入:(3分鐘)
2020年春節(jié)探親時,由于臺灣和祖國大陸之間沒有直達航班,某老先生只好從臺北經(jīng)過香港,再抵達上海,這兩次位移之和是什么?
二、學導結(jié)合
向量是否能進行運算?
A B
2、 C
1. 某人從A到B,再從B按原方向到C,
則兩次的位移和:
C A B
2. 若上題改為從A到B,再從B按反方向到C,
A B
C
則兩次的位移和:
3. 某車從A到B,再從B改變方向到C,
A B
C
則兩次的位移和:
4. 船速為,水速為,
則兩速度和:
向量的加法
1. 定義:
2.三角形法則(作圖演示):
作圖關(guān)鍵 :平移向量使得兩向量首尾相連
3.已知向量、,求作向量+及+
3、b
a
作法:
4.加法的交換律和平行四邊形法則
上題中+的結(jié)果與+是否相同?
從而得到:1°向量加法的平行四邊形法則
2°向量加法的交換律:+=+
問題1:兩種求和法則有什么關(guān)系?
向量加法的三角形法則與平行四邊形法則是一致的,但兩個向量共線時,三角形法則更有優(yōu)勢。
A
B
C
D
a
c
a+b+c
b
a+b
b+c
加法的結(jié)合律:(+) +=+ (+)
證:如圖:
從而,多個向量的加法運算可以按照任意的次序、任意的組合
4、來進行。
6.向量加法的多邊形法則
問題2:如何求平面內(nèi)n(n>3)個向量的和向量?
問題3:若點O與點An重合,你將得出什么結(jié)論?
例1:如圖,一艘船從A點出發(fā)以2 km/h的速度向垂直于對岸的方向行駛,同時河水的流速為2km/h。求船實際航行速度的大小與方向(用與水流方向的夾角表示)。
A
B
C
DC
例2:某人先位移向量a:“向東走3km”,接著再位移向量b:“向北走3km”,求a+b
三、探究深化
問題1:a+b的方向與a,b的方向有何關(guān)系?
︱ a+b︱與︱a︱,︱b︱有何關(guān)系?
問題2:討論:、和的大小關(guān)系
四、總結(jié)歸納:
1°向量加法的幾何法則
2°換律和結(jié)合律
3°注意:|+| > || + ||不一定成立,因為共線向量不然。
五、課堂練習
1.向量a表示“向東走2km”,向量b表示“向南走km”,則a+b+a表示 。
2.在四邊形ABCD中,+++= 。
3. O為三角形ABC內(nèi)一點,若++=,則O是三角形ABC的( )。
A.內(nèi)心 B.外心 C.垂心 D.重心