九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2021高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時集訓(xùn)36 數(shù)列求和 理 北師大版

上傳人:Sc****h 文檔編號:116817503 上傳時間:2022-07-06 格式:DOC 頁數(shù):8 大?。?40KB
收藏 版權(quán)申訴 舉報(bào) 下載
2021高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時集訓(xùn)36 數(shù)列求和 理 北師大版_第1頁
第1頁 / 共8頁
2021高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時集訓(xùn)36 數(shù)列求和 理 北師大版_第2頁
第2頁 / 共8頁
2021高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時集訓(xùn)36 數(shù)列求和 理 北師大版_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2021高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時集訓(xùn)36 數(shù)列求和 理 北師大版》由會員分享,可在線閱讀,更多相關(guān)《2021高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時集訓(xùn)36 數(shù)列求和 理 北師大版(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、課后限時集訓(xùn)36 數(shù)列求和 建議用時:45分鐘 一、選擇題 1.在等差數(shù)列{an}中,若a3+a5+a7=6,a11=8,則數(shù)列的前n項(xiàng)和Sn=(  ) A.     B. C. D. B [設(shè)等差數(shù)列{an}的公差為d,由a3+a5+a7=6,a11=8,得a5=2,d=1,所以an=n-3.則an+3=n,an+4=n+1,所以==-.所以Sn=1-=.故選B.] 2.?dāng)?shù)列{(-1)n(2n-1)}的前2 020項(xiàng)和S2 020等于(  ) A.-2 018 B.2 018 C.-2 020 D.2 020 D [S2 020=-1+3-5+7+…-(2×2 01

2、9-1)+(2×2 020-1)=2×1 010=2 020.故選D.] 3.在數(shù)列{an}中,已知a1+a2+…+an=2n-1,則a+a+…+a=(  ) A.(2n-1)2 B. C.4n-1 D. D [由題意得,當(dāng)n=1時,a1=1,當(dāng)n≥2時,a1+a2+…+an-1=2n-1-1,則an=2n-1-(2n-1-1)=2n-1(n≥2),n=1時也成立,所以an=2n-1,則a= 22n-2,所以數(shù)列{a}的首項(xiàng)為1,公比為4的等比數(shù)列,所以a+a+…+a==,故選D.] 4.?dāng)?shù)列{an}中,a1=2,且an+an-1=+2(n≥2),則數(shù)列前2 019項(xiàng)和為(  )

3、 A. B. C. D. B [∵an+an-1=+2(n≥2), ∴a-a-2(an-an-1)=n, 整理,得(an-1)2-(an-1-1)2=n, ∴(an-1)2-(a1-1)2=n+(n-1)+…+2, 又a1=2, ∴(an-1)2=, 即==2. 則數(shù)列前2 019項(xiàng)和為: 2=2=.故選B.] 5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,an+an+1=2n(n∈N+),則S13= (  ) A. B. C. D. C [∵a1=2, ∴n=2時,a2+a3=22,n=4時,a4+a5=24, n=6時,a6+a7=26,n=8時,a8+

4、a9=28, n=10時,a10+a11=210,n=12時,a12+a13=212, ∴S13=2+22+24+26+28+210+212 =2+=.故選C.] 二、填空題 6.(2019·浙江臺州期中)已知數(shù)列{an}滿足=-1,且a1=1,則an=________,數(shù)列{bn}滿足bn=,則數(shù)列{bn}的前n項(xiàng)和Sn=________.  (n-1)·2n+1+2 [由=-1可得-=1, 所以為等差數(shù)列,公差、首項(xiàng)都為1, 由等差數(shù)列的通項(xiàng)公式可得 =n,an=,=n×2n, Sn=1×2+2×22+…+n×2n, 2Sn=1×22+…+(n-1)×2n+n×2n+

5、1, 相減得Sn=-(2+22+…+2n)+n×2n+1=-+n×2n+1=(n-1)×2n+1+2.] 7.已知數(shù)列{an}滿足a1=1,an+1·an=2n(n∈N+),則S2 018=________. 3·21 009-3  [∵數(shù)列{an}滿足a1=1,an+1·an=2n,① ∴n=1時,a2=2,n≥2時,an·an-1=2n-1,② 由①÷②得=2, ∴數(shù)列{an}的奇數(shù)項(xiàng)、偶數(shù)項(xiàng)分別成等比數(shù)列, ∴S2 018=+=3·21 009-3.] 8.已知等差數(shù)列{an}滿足a3=7,a5+a7=26,bn=(n∈N+),數(shù)列{bn}的前n項(xiàng)和為Sn,則S100的值

6、為________.  [因?yàn)閍3=7,a5+a7=26,所以公差d=2, 所以an=a3+2(n-3)=2n+1. 所以bn====.所以S100=b1+b2+…+b100 ==.] 三、解答題 9.已知等差數(shù)列{an}滿足a6=6+a3,且a3-1是a2-1,a4的等比中項(xiàng). (1)求數(shù)列{an}的通項(xiàng)公式; (2)設(shè)bn=(n∈N+),數(shù)列{bn}的前項(xiàng)和為Tn,求使Tn<成立的最大正整數(shù)n的值 [解] (1)設(shè)等差數(shù)列{an}的公差為d, ∵a6-a3=3d=6,即d=2, ∴a3-1=a1+3,a2-1=a1+1,a4=a1+6, ∵a3-1是a2-1,a4的

7、等比中項(xiàng), ∴(a3-1)2=(a2-1)·a4,即 (a1+3)2=(a1+1)(a1+6),解得a1=3. ∴數(shù)列{an}的通項(xiàng)公式為an=2n+1. (2)由(1)得 bn===. ∴Tn=b1+b2+…+bn = ==, 由<,得n<9. ∴使Tn<成立的最大正整數(shù)n的值為8. 10.(2019·天津高考)設(shè){an}是等差數(shù)列,{bn}是等比數(shù)列,公比大于0,已知a1=b1=3,b2=a3,b3=4a2+3. (1)求{an}和{bn}的通項(xiàng)公式; (2)設(shè)數(shù)列{cn}滿足cn=求a1c1+a2c2+…+a2nc2n(n∈N+). [解] (1)設(shè)等差數(shù)列

8、{an}的公差為d,等比數(shù)列{bn}的公比為q.依題意,得 解得 故an=3+3(n-1)=3n,bn=3×3n-1=3n. 所以{an}的通項(xiàng)公式為an=3n, {bn}的通項(xiàng)公式為bn=3n. (2)a1c1+a2c2+…+a2nc2n =(a1+a3+a5+…+a2n-1)+(a2b1+a4b2+a6b3+…+a2nbn) =+(6×31+12×32+18×33+…+6n×3n) =3n2+6(1×31+2×32+…+n×3n). 記Tn=1×31+2×32+…+n×3n,① 則3Tn=1×32+2×33+…+n×3n+1,② ②-①得, 2Tn=-3-32-33

9、-…-3n+n×3n+1=-+n×3n+1 =. 所以a1c1+a2c2+…+a2nc2n=3n2+6Tn =3n2+3× =(n∈N+). 1.定義在[0,+∞)上的函數(shù)f(x)滿足:當(dāng)0≤x<2時,f(x)=2x-x2;當(dāng)x≥2時,f(x)=3f(x-2).記函數(shù)f(x)的極大值點(diǎn)從小到大依次記為a1,a2,…,an,…,并記相應(yīng)的極大值為b1,b2,…,bn,…,則a1b1+a2b2+…+a20b20的值為(  ) A.19×320+1 B.19×319+1 C.20×319+1 D.20×320+1 A [由題意當(dāng)0≤x<2時, f(x)=2x-x2=-(x-1)

10、2+1極大值點(diǎn)為1,極大值為1,當(dāng)x≥2時,f(x)=3f(x-2).則極大值點(diǎn)形成首項(xiàng)為1,公差為2 的等差數(shù)列,極大值形成首項(xiàng)為1,公比為3的等比數(shù)列,故an=2n-1,bn=3n-1, 故anbn=(2n-1)3n-1, 設(shè)S=a1b1+a2b2+…+a20b20 =1×1+3×31+5×32+…+39×319, 3S=1×31+3×32+…+39×320, 兩式相減得 -2S=1+2(31+32+…+319)-39×320 =1+2×-39×320, ∴S=19×320+1,故選A.] 2.(2019·金山中學(xué)模擬)數(shù)列{an}且an=若Sn是數(shù)列{an}的前n項(xiàng)和,

11、則S2 018=________.  [數(shù)列{an}且an= ①當(dāng)n為奇數(shù)時,an==, ②當(dāng)n為偶數(shù)時,an=sin , 所以S2 018=(a1+a3+a5+…+a2 017)+(a2+a4+a6+…+a2 018), =+(1+0-1+…+0), =+1=.] 3.(2019·濟(jì)南模擬)如圖,將平面直角坐標(biāo)系中的格點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))按如下規(guī)則標(biāo)上標(biāo)簽:原點(diǎn)處標(biāo)數(shù)字0,記為a0;點(diǎn)(1,0)處標(biāo)數(shù)字1,記為a1;點(diǎn)(1,-1)處標(biāo)數(shù)字0,記為a2;點(diǎn)(0,-1)處標(biāo)數(shù)字-1,記為a3;點(diǎn)(-1,-1)處標(biāo)數(shù)字-2,記為a4;點(diǎn)(-1,0)處標(biāo)數(shù)字-1,記為a5;

12、點(diǎn)(-1,1)處標(biāo)數(shù)字0,記為a6;點(diǎn)(0,1)處標(biāo)數(shù)字1,記為a7;……;以此類推,格點(diǎn)坐標(biāo)為(i,j)的點(diǎn)處所標(biāo)的數(shù)字為i+j(i,j均為整數(shù)),記Sn=a1+a2+…+an,則S2 018=________. -249 [設(shè)an的坐標(biāo)為(x,y),則an=x+y.第一圈從點(diǎn)(1,0)到點(diǎn)(1,1)共8個點(diǎn),由對稱性可知a1+a2+…+a8=0;第二圈從點(diǎn)(2,1)到點(diǎn)(2,2)共16個點(diǎn),由對稱性可知a9+a10+…+a24=0,……;以此類推,可得第n圈的8n個點(diǎn)對應(yīng)的這8n項(xiàng)的和也為0.設(shè)a2 018在第k圈,則8+16+…+8k=4k(k+1),由此可知前22圈共有2 024

13、個數(shù),故S2 024=0,則S2 018=S2 024-(a2 024+a2 023+…+a2 019),a2 024所在點(diǎn)的坐標(biāo)為(22,22),a2 024=22+22,a2 023所在點(diǎn)的坐標(biāo)為(21,22),a2 023=21+22,以此類推,可得a2 022=20+22,a2 021=19+22,a2 020=18+22,a2 019=17+22,所以a2 024+a2 023+…+a2 019=249,故S2 018=-249.] 4.已知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列. (1)求數(shù)列{an}的通項(xiàng)公式; (2)設(shè)Tn為數(shù)列的

14、前n項(xiàng)和,若λTn≤an+1對一切n∈N+恒成立,求實(shí)數(shù)λ的最大值. [解] (1)設(shè)數(shù)列{an}的公差為d(d≠0),由已知得, 解得或(舍去),所以an=n+1. (2)由(1)知=-, 所以Tn=++…+ =-=. 又λTn≤an+1恒成立, 所以λ≤=2+8, 而2+8≥16,當(dāng)且僅當(dāng)n=2時等號成立. 所以λ≤16,即實(shí)數(shù)λ的最大值為16. 1.(2017·全國卷Ⅰ)幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知數(shù)列1,1,2,1,2,4,1,2

15、,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20,接下來的兩項(xiàng)是20,21,再接下來的三項(xiàng)是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是(  ) A.440 B.330 C.220 D.110 A [設(shè)首項(xiàng)為第1組,接下來的兩項(xiàng)為第2組,再接下來的三項(xiàng)為第3組,依此類推,則第n組的項(xiàng)數(shù)為n,前n組的項(xiàng)數(shù)和為. 由題意知,N>100, 令>100?n≥14且n∈N+, 即N出現(xiàn)在第13組之后. 第n組的各項(xiàng)和為=2n-1,前n組所有項(xiàng)的和為-n=2n+1-2-n. 設(shè)N是第n+1組的第k項(xiàng),若要使前N

16、項(xiàng)和為2的整數(shù)冪,則第n+1組的前k項(xiàng)的和2k-1應(yīng)與-2-n互為相反數(shù),即2k-1=2+n(k∈N+,n≥14),k=log2(n+3)?n最小為29,此時k=5, 則N=+5=440. 故選A.] 2.已知{xn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且x1+x2=3,x3-x2=2. (1)求數(shù)列{xn}的通項(xiàng)公式; (2)如圖,在平面直角坐標(biāo)系xOy中,依次連接點(diǎn)P1(x1,1),P2(x2,2),…,Pn+1(xn+1,n+1)得到折線P1P2…Pn+1,求由該折線與直線y=0,x=x1,x=xn+1所圍成的區(qū)域的面積Tn. [解] (1)設(shè)數(shù)列{xn}的公比為q,由已知知q>0

17、. 由題意得 所以3q2-5q-2=0. 因?yàn)閝>0,所以q=2,x1=1. 因此數(shù)列{xn}的通項(xiàng)公式為xn=2n-1. (2)過P1,P2,…,Pn+1向x軸作垂線,垂足分別為Q1,Q2,…,Qn+1. 由(1)得xn+1-xn=2n-2n-1=2n-1, 記梯形PnPn+1Qn+1Qn的面積為bn, 由題意bn=×2n-1=(2n+1)×2n-2, 所以Tn=b1+b2+…+bn =3×2-1+5×20+7×21+…+(2n-1)×2n-3+(2n+1)×2n-2,① 2Tn=3×20+5×21+7×22+…+(2n-1)×2n-2+(2n+1)×2n-1.② ①-②得 -Tn=3×2-1+(2+22+…+2n-1)-(2n+1)×2n-1=+-(2n+1)×2n-1. 所以Tn=. 8

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!