九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

六年級下冊數(shù)學講義-小升初培優(yōu):第04講 直線型面積——組合圖形面積(下)(解析版)全國通用

上傳人:仙*** 文檔編號:117862773 上傳時間:2022-07-10 格式:DOC 頁數(shù):6 大?。?25.50KB
收藏 版權(quán)申訴 舉報 下載
六年級下冊數(shù)學講義-小升初培優(yōu):第04講 直線型面積——組合圖形面積(下)(解析版)全國通用_第1頁
第1頁 / 共6頁
六年級下冊數(shù)學講義-小升初培優(yōu):第04講 直線型面積——組合圖形面積(下)(解析版)全國通用_第2頁
第2頁 / 共6頁
六年級下冊數(shù)學講義-小升初培優(yōu):第04講 直線型面積——組合圖形面積(下)(解析版)全國通用_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《六年級下冊數(shù)學講義-小升初培優(yōu):第04講 直線型面積——組合圖形面積(下)(解析版)全國通用》由會員分享,可在線閱讀,更多相關(guān)《六年級下冊數(shù)學講義-小升初培優(yōu):第04講 直線型面積——組合圖形面積(下)(解析版)全國通用(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第04講 直線型面積——組合圖形面積(下) 教學目標: 1、通過圖形的組合和分解培養(yǎng)分析問題、解決問題的能力及動手創(chuàng)新的意識學會把復雜問題轉(zhuǎn)化為簡單問題; 2、繼續(xù)深入學習組合圖形面積的知識,加強數(shù)學的整體綜合的能力; 3、通過拼組圖形,進一步使學員感受數(shù)學與現(xiàn)實生活的密切聯(lián)系,體會數(shù)學帶給大家的生活美。 教學重點: 會結(jié)合圖形本身的特點,選擇恰當?shù)姆椒ㄇ蠼M合圖形的面積。 教學難點: 會把組合圖形分解成已學過的平面圖形,并初步學會添加輔助線的分析方法。 教學過程: 【環(huán)節(jié)一:預習討論,案例分析】 【知識回顧——溫故知

2、新】(參考時間-2分鐘) 1. 組合圖形面積的計算,除了需要掌握一些基本圖形(長方形、正方形、平行四邊、梯形等)的面積計算方法,還要結(jié)合圖形本身的特點選擇恰當?shù)姆椒ǎ? 2. 在組合圖形面積計算時,常用到的方法有很多,本講著重學習兩種方法: ① 用加減法求面積。加減法分相加法和相減法兩種,相加法是將稍復雜的組合圖形通過分解轉(zhuǎn)化為若干基本圖形,準確地計算出每一個基本圖形的面積,然后相加求出組合圖形的面積,相減法是將所求組合圖形面積看成是若干基本圖形相減之差; ② 用等積變形的方法求面積。 【知識回顧——上期鞏固】(參考時間-3分鐘) 如圖,大正方形邊長為3厘米,小正方形邊長

3、為2厘米,求陰影部分面積。 解析部分:陰影部分是個三角形,但其面積不能直接求。觀察圖形,可以發(fā)現(xiàn)陰影部分是△AFH與其余部分的面積和,其余部分的面積可以用兩個正方形的面積和減去△ABC、△CEF的面積得到。 給予新學員的建議:多多在紙上進行嘗試操作,進行面積的加減求出陰影部分面積。 哈佛案例教學法:引導學員多多進行紙上的親自動手畫一畫圖形,提升基礎的畫圖能力以及計算的能力。 參考答案:S陰影= S△AFH +S□ABCD+ S□DEFH-S△ABC-S△CEF =2×(3-2)÷2+3×3+2×2-3×3÷2-(3+2)×2÷2 =4.5(cm2) 【

4、預習題分析——本期預習】(參考時間-7分鐘) 如圖,ABCD是平行四邊形,△BCE是直角三角形,BC長6cm,EC長5cm,陰影部分面積比△EFG的面積大9cm2,求GC的長。 解析部分: 已知“陰影部分面積比△EFG的面積大9cm2”可將其替換成平行四邊形ABCD的面積比△BCE的面積大9cm2。求出△BCE面積,就能知道平行四邊形ABCD的面積。又因為△BCE與平行四邊形ABCD同底,就能求出平行四邊形ABCD的高GC。 給予新學員的建議:充分此題的各個線段的互相之間的關(guān)聯(lián)和特點,找到問題的突破口。 哈佛案例教學法:引導學員多多在紙上進行圖形的畫一畫和基礎計算,鼓勵學

5、員積極主動的說出自己的想法。 參考答案:S□ABCD= S△BCE +9=6×5÷2+9=24(cm2), GC長為:24÷6=4(cm) 【環(huán)節(jié)二:知識拓展、能力提升】 【知識點分析——本期知識點】(參考時間-2分鐘) 1. 組合圖形面積的計算,除了需要掌握一些基本圖形(長方形、正方形、平行四邊、梯形等)的面積計算方法,還要結(jié)合圖形本身的特點選擇恰當?shù)姆椒ǎ? 2. 在組合圖形面積計算時,常用到的方法有很多,本講著重學習兩種方法: ① 用加減法求面積。加減法分相加法和相減法兩種,相加法是將稍復雜的組合圖形通過分解轉(zhuǎn)化為若干基本圖形,準確地計算出每一個基本圖形的面積,然后相

6、加求出組合圖形的面積,相減法是將所求組合圖形面積看成是若干基本圖形相減之差; ② 用等積變形的方法求面積。 【例題分析——講解室】(參考時間-10分鐘) 如圖,正方形ABCD的邊長是8cm,正方形GCEF的邊長是6cm,求圖中陰影部分的面積。 ? 可以用什么方法求陰影部分的面積? ? 能不能構(gòu)造與陰影部分同底等高的三角形? 解析部分: 思路1:圖中陰影部分可以用總的面積減去空白部分的面積, 思路2:通過構(gòu)造同底等高的三角形來求。要構(gòu)造與陰影部分同底等高的三角形,只能以GE為底,連結(jié)AC則AC與GE平行,△AEG與△CEG同底等高。 給予新學員的建議:根

7、據(jù)圖形的特點,找到合適的輔助線對于問題進行相應的解決。 哈佛案例教學法:引導學員在課堂上積極參與小組內(nèi)討論過程,帶動起積極熱烈的課堂氛圍。 參考答案: 解法1:S陰影=S□ABCD+ S□CEFG- S△ADG- S△ABE- S△EFG =8×8+6×6-8×(8-6)÷2-8×(8+6)÷2-6×6÷2 =18(cm2) 解法2:連結(jié)AC,則AC∥GE,故△AEG與△CEG同底(GE)且等高, S陰影=S△CEG=6×6÷2=18(cm2) 【環(huán)節(jié)三:階段復習】 【游戲環(huán)節(jié)——游樂場】(參考時間-2分鐘) 游戲名稱: 二的妙用 游戲規(guī)則: 語文老

8、師上課時出了一道特別的題目,要求大家將下面的16個方格中的每個“二”字加上兩筆,使其組成16個不同的字。你也試試吧! 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 參考答案:略。 【練習分析——練習場(一)】(參考時間-7分鐘) 如圖,平行四邊形ABCD中,AE﹦EF﹦FB。AG﹦2CG,△GEF的面積是6cm2,平行四邊形的面積是多少? ? 根據(jù)AE=EF=FB,可以怎樣添加輔助線? ? 如何利用AG=2CG這個條件? 解析部分:根據(jù)AE﹦EF﹦FB,想到連結(jié)GB,構(gòu)造3個等底等高的三角形,求出△AGB的面

9、積。而△AGB和△CGB又等高,面積的倍數(shù)關(guān)系等于底邊的倍數(shù)關(guān)系,就能得到△ABC的面積,即平行四邊形ABCD面積的一半。 給予新學員的建議:對于圖形進行認真的觀察后說出自己的思考和理解,找到恰當?shù)妮o助線。 哈佛案例教學法:引導學員對于圖形進行觀察,并對學員進行即時性的提問,并給予即時的鼓勵和支持。 參考答案: 連結(jié)GB,則 S△ABG= 3S△GEF=3×6=18(cm2),S△CGB= S△ABG÷2=18÷2=9(cm2) S□ABCD=(S△ABG+ S△CGB)×2=(18+9)×2=54(cm2) 【練習分析——練習場(二)】(參考時間-7分鐘) 如

10、圖,一個邊長為10dm的正方形ABCD,在AB和AD上各有一點E和F,它們分別與點A相距5dm和4dm?,F(xiàn)在請你在正方形的另外兩條邊BC或CD上任選一點G,并將它與E和F兩點連成一個三角形,問連成的△EFG的最大面積是多少? ? 如何保證△EFG的面積最大,G點的位置如何確定? ? 如何求△EFG的面積? 解析部分:△EFG中EF是確定的,所以要保證△EFG的面積最大,EF邊上的高要最長,這時G點要和C點重合,如下圖△EFG的面積用總的面積減去其他三角形的面積即可求出。 給予新學員的建議:認真觀察圖形,仔細分析題目所提出的要求,找到解決的邏輯點。 哈佛案例教學法:引導

11、學員進行圖形的認真觀察,鼓勵學員進行積極熱烈的小組內(nèi)討論,并進行相應的課堂發(fā)言。 參考答案: △EFG中EF是確定的,所以要保證△EFG的面積最大,EF邊上的高要最長,這時G點要和C點重合,此時 S△EFG=S□ABCD-(S△AEF+ S△BFG+ SDEG) =10×10-[5×4÷2+5×10÷2+(10-4)×10÷2] =100-75 =35(dm2) 【本節(jié)總結(jié)】 1、組合圖形面積的計算,除了需要掌握一些基本圖形(長方形、正方形、平行四邊、梯形等)的面積計算方法,還要結(jié)合圖形本身的特點選擇恰當?shù)姆椒ǎ? 2、在組合圖形面積計算時,常用到的方法有很多,本講著重學習兩種方法: ① 用加減法求面積。加減法分相加法和相減法兩種,相加法是將稍復雜的組合圖形通過分解轉(zhuǎn)化為若干基本圖形,準確地計算出每一個基本圖形的面積,然后相加求出組合圖形的面積,相減法是將所求組合圖形面積看成是若干基本圖形相減之差; ② 用等積變形的方法求面積。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!