《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 第1講 直線與圓練習(xí) 理 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 第1講 直線與圓練習(xí) 理 新人教A版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第1講 直線與圓
一、選擇題
1.已知直線l1過點(diǎn)(-2,0)且傾斜角為30°,直線l2過點(diǎn)(2,0)且與直線l1垂直,則直線l1與直線l2的交點(diǎn)坐標(biāo)為( )
A.(3,) B.(2,)
C.(1,) D.
解析:選C.直線l1的斜率k1=tan 30°=,因?yàn)橹本€l2與直線l1垂直,所以直線l2的斜率k2=-=-,所以直線l1的方程為y=(x+2),直線l2的方程為y=-(x-2),聯(lián)立解得即直線l1與直線l2的交點(diǎn)坐標(biāo)為(1,).
2.圓C與x軸相切于T(1,0),與y軸正半軸交于A、B兩點(diǎn),且|AB|=2,則圓C的標(biāo)準(zhǔn)方程為( )
A.(x-1)2+(
2、y-)2=2
B.(x-1)2+(y-2)2=2
C.(x+1)2+(y+)2=4
D.(x-1)2+(y-)2=4
解析:選A.由題意得,圓C的半徑為=,圓心坐標(biāo)為(1,),所以圓C的標(biāo)準(zhǔn)方程為(x-1)2+(y-)2=2,故選A.
3.已知圓M:x2+y2-2ay=0(a>0)截直線x+y=0所得線段的長度是2,則圓M與圓N:(x-1)2+(y-1)2=1的位置關(guān)系是( )
A.內(nèi)切 B.相交
C.外切 D.相離
解析:選B.圓M:x2+y2-2ay=0(a>0)可化為x2+(y-a)2=a2,由題意,M(0,a)到直線x+y=0的距離d=,所以a2=+2,解得a=2
3、.所以圓M:x2+(y-2)2=4,所以兩圓的圓心距為,半徑和為3,半徑差為1,故兩圓相交.
4.(2019·皖南八校聯(lián)考)圓C與直線2x+y-11=0相切,且圓心C的坐標(biāo)為(2,2),設(shè)點(diǎn)P的坐標(biāo)為(-1,y0).若在圓C上存在一點(diǎn)Q,使得∠CPQ=30°,則y0的取值范圍是( )
A.[-,] B.[-1,5]
C.[2-,2+] D.[2-2,2+2]
解析:選C.由點(diǎn)C(2,2)到直線2x+y-11=0的距離為=,可得圓C的方程為(x-2)2+(y-2)2=5.若存在這樣的點(diǎn)Q,當(dāng)PQ與圓C相切時,∠CPQ≥30°,可得sin∠CPQ==≥sin 30°,即CP≤2,則≤
4、2,解得2-≤y0≤2+.故選C.
5.在平面直角坐標(biāo)系內(nèi),過定點(diǎn)P的直線l:ax+y-1=0與過定點(diǎn)Q的直線m:x-ay+3=0相交于點(diǎn)M,則|MP|2+|MQ|2=( )
A. B.
C.5 D.10
解析:選D.由題意知P(0,1),Q(-3,0),因?yàn)檫^定點(diǎn)P的直線ax+y-1=0與過定點(diǎn)Q的直線x-ay+3=0垂直,所以MP⊥MQ,所以|MP|2+|MQ|2=|PQ|2=9+1=10,故選D.
6.(一題多解)(2019·河南鄭州模擬)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線x-ky+1=0與圓C:x2+y2=4相交于A,B兩點(diǎn),=+,若點(diǎn)M在圓C上,則實(shí)數(shù)k的值為(
5、 )
A.-2 B.-1
C.0 D.1
解析:選C.法一:設(shè)A(x1,y1),B(x2,y2),由得(k2+1)y2-2ky-3=0,則Δ=4k2+12(k2+1)>0,y1+y2=,x1+x2=k(y1+y2)-2=-,因?yàn)椋剑?,故M,又點(diǎn)M在圓C上,故+=4,解得k=0.
法二:由直線與圓相交于A,B兩點(diǎn),=+,且點(diǎn)M在圓C上,得圓心C(0,0)到直線x-ky+1=0的距離為半徑的一半,為1,即d==1,解得k=0.
二、填空題
7.過點(diǎn)(,0)引直線l與曲線y=相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△AOB的面積取最大值時,直線l的斜率等于________.
解析:令P(
6、,0),如圖,易知|OA|=|OB|=1,
所以S△AOB=|OA|·|OB|·sin∠AOB=sin∠AOB≤,
當(dāng)∠AOB=90°時,△AOB的面積取得最大值,此時過點(diǎn)O作OH⊥AB于點(diǎn)H,
則|OH|=,
于是sin∠OPH===,易知∠OPH為銳角,所以∠OPH=30°,
則直線AB的傾斜角為150°,故直線AB的斜率為tan 150°=-.
答案:-
8.已知圓O:x2+y2=4到直線l:x+y=a的距離等于1的點(diǎn)至少有2個,則實(shí)數(shù)a的取值范圍為________.
解析:由圓的方程可知圓心為(0,0),半徑為2.因?yàn)閳AO到直線l的距離等于1的點(diǎn)至少有2個,所以圓心
7、到直線l的距離d
8、-2
三、解答題
10.已知點(diǎn)M(-1,0),N(1,0),曲線E上任意一點(diǎn)到點(diǎn)M的距離均是到點(diǎn)N的距離的倍.
(1)求曲線E的方程;
(2)已知m≠0,設(shè)直線l1:x-my-1=0交曲線E于A,C兩點(diǎn),直線l2:mx+y-m=0交曲線E于B,D兩點(diǎn).當(dāng)CD的斜率為-1時,求直線CD的方程.
解:(1)設(shè)曲線E上任意一點(diǎn)的坐標(biāo)為(x,y),
由題意得=·,
整理得x2+y2-4x+1=0,即(x-2)2+y2=3為所求.
(2)由題意知l1⊥l2,且兩條直線均恒過點(diǎn)N(1,0).設(shè)曲線E的圓心為E,則E(2,0),設(shè)線段CD的中點(diǎn)為P,連接EP,ED,NP,則直線EP:y=x
9、-2.
設(shè)直線CD:y=-x+t,
由解得點(diǎn)P,
由圓的幾何性質(zhì),知|NP|=|CD|=,
而|NP|2=+,|ED|2=3,
|EP|2=,
所以+=3-,整理得t2-3t=0,解得t=0或t=3,
所以直線CD的方程為y=-x或y=-x+3.
11.在平面直角坐標(biāo)系xOy中,曲線y=x2+mx-2與x軸交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1),當(dāng)m變化時,解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點(diǎn)的圓在y軸上截得的弦長為定值.
解:(1)不能出現(xiàn)AC⊥BC的情況,理由如下:
設(shè)A(x1,0),B(x2,0),則x1,x2滿足
10、x2+mx-2=0,所以x1x2=-2.
又C的坐標(biāo)為(0,1),故AC的斜率與BC的斜率之積為·=-,所以不能出現(xiàn)AC⊥BC的情況.
(2)證明:BC的中點(diǎn)坐標(biāo)為(,),可得BC的中垂線方程為y-=x2(x-).
由(1)可得x1+x2=-m,所以AB的中垂線方程為x=-.
聯(lián)立又x+mx2-2=0,
可得
所以過A,B,C三點(diǎn)的圓的圓心坐標(biāo)為(-,-),半徑r=.
故圓在y軸上截得的弦長為2=3,即過A,B,C三點(diǎn)的圓在y軸上截得的弦長為定值.
12.在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4,設(shè)圓C的半徑為1,圓心在直線l上.
(1)若圓心C也在直線
11、y=x-1上,過點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使|MA|=2|MO|,求圓心C的橫坐標(biāo)a的取值范圍.
解:(1)因?yàn)閳A心在直線l:y=2x-4上,也在直線y=x-1上,所以解方程組得圓心C(3,2),
又因?yàn)閳AC的半徑為1,
所以圓C的方程為(x-3)2+(y-2)2=1,
又因?yàn)辄c(diǎn)A(0,3),顯然過點(diǎn)A,圓C的切線的斜率存在,設(shè)所求的切線方程為y=kx+3,即kx-y+3=0,
所以=1,解得k=0或k=-,
所以所求切線方程為y=3或y=-x+3,
即y-3=0或3x+4y-12=0.
(2)因?yàn)閳AC的圓心在直線l:y=2x-4上,
所以設(shè)圓心C為(a,2a-4),
又因?yàn)閳AC的半徑為1,
則圓C的方程為(x-a)2+(y-2a+4)2=1.
設(shè)M(x,y),又因?yàn)閨MA|=2|MO|,則有
=2,
整理得x2+(y+1)2=4,其表示圓心為(0,-1),半徑為2的圓,設(shè)為圓D,
所以點(diǎn)M既在圓C上,又在圓D上,即圓C與圓D有交點(diǎn),
所以2-1≤≤2+1,
解得0≤a≤,所以圓心C的橫坐標(biāo)a的取值范圍為.
- 6 -