購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
家用多功能切菜機(jī)設(shè)計及動畫仿真
學(xué) 院:
專 業(yè):
姓 名:
指導(dǎo)老師:
學(xué) 號:
職 稱:
畢業(yè)設(shè)計誠信承諾書
本人鄭重承諾:本人承諾呈交的畢業(yè)設(shè)計(論文)《家用的多功能切菜機(jī)設(shè)計及動畫仿真》是在指導(dǎo)教師的指導(dǎo)下,獨(dú)立開展研究取得的成果,文中引用他人的觀點(diǎn)和材料,均在文后按順序列出其參考文獻(xiàn),設(shè)計(論文)使用的數(shù)據(jù)真實(shí)可靠。
本人簽名:
日期: 年 月 日
家用的多功能切菜機(jī)設(shè)計及動畫仿真
摘 要
隨著人民對生活水平的不斷要求,食用蔬菜成為人們重要部分,家用切菜機(jī)應(yīng)用場所廣泛,能夠減輕人的勞動強(qiáng)度,切制出各種菜品,提高效率。
本次設(shè)計的切菜機(jī)主要由外殼體、豎直切菜機(jī)構(gòu)、離心切菜機(jī)構(gòu)、電機(jī)底座、帶傳動、齒輪系等組成。在本次設(shè)計過程中,首先調(diào)查分析了切菜機(jī)的研究現(xiàn)況及工作原理,在此基礎(chǔ)上提出總體設(shè)計方案;接著,對各機(jī)構(gòu)主要零部件進(jìn)行了詳細(xì)的設(shè)計;最后,采用AutoCAD繪圖軟件繪制了本家用多功能切菜機(jī)的裝配圖及主要零部件圖,并且采用Pro/E構(gòu)件了三維模型及仿真模擬。
通過本次設(shè)計,鞏固了大學(xué)所學(xué)專業(yè)知識,如:機(jī)械原理、機(jī)械設(shè)計、材料力學(xué)、公差與互換性理論、機(jī)械制圖等;也掌握了普通機(jī)械產(chǎn)品的設(shè)計方法,并能熟練使用AutoCAD繪圖軟件、Pro/E三維設(shè)計軟件,對今后的工作有極大意義。
關(guān)鍵字:切菜機(jī)、曲柄滑塊、帶傳動、設(shè)計
家用的多功能切菜機(jī)設(shè)計及動畫仿真
Abstract
With the people's standard of living increasing demands, edible vegetables has become one of the most important part, household cutting machine application places widely, can reduce the labor intensity, cut a variety of dishes and improve efficiency.
The design of the cutting machine is mainly composed of shell body, a vertical cutting mechanism, centrifugal cutting mechanism, motor base, belt drive, gear train. In the design process, the first survey analysis of the vegetable cutting machine research status and working principle, overall design scheme was put forward on the basis of this; and then, the detailed design of the main parts of the mechanism is discussed. Finally, using AutoCAD software rendering the capitalists with multifunctional vegetable cutter assembly and major parts of the map, and the use of Pro / E components the 3D model and simulation.
Through the design, the consolidation of the University of the professional knowledge, such as mechanical principle, mechanical design, mechanics of materials, tolerance and interchangeability theories, mechanical drawing; also mastered the design method of general machinery products, and can skillfully use AutoCAD, Pro / e three dimensional design software, for future work are of great significance.
Key words: Cutting machine, Crank slider, Belt drive, Design
目 錄
1 緒論 1
1.1研究背景及意義 1
1.2國內(nèi)外切菜機(jī)現(xiàn)狀 1
1.3課題主要內(nèi)容 1
2 總體方案設(shè)計 2
2.1功能及參數(shù)選擇 2
2.1.1功能選定 2
2.1.2參數(shù)選擇 2
2.2方案分析 2
2.2.1方案一 2
2.2.2方案二 3
2.3 方案選定與原理分析 3
3 動力及傳動機(jī)構(gòu)設(shè)計 5
3.1 電動機(jī)的選擇 5
3.2帶傳動的設(shè)計 5
3.2.1帶一的設(shè)計 5
3.2.2帶二的設(shè)計 6
3.3圓柱齒輪的設(shè)計 8
3.3.1選擇齒輪材料、熱處理方式和精度等級 8
3.3.2按齒面接觸強(qiáng)度設(shè)計 8
3.3.3按齒根彎曲強(qiáng)度設(shè)計 10
3.3.4幾何尺寸計算 11
3.4軸的設(shè)計 11
3.4.1軸徑的初步估算 11
3.4.2軸的結(jié)構(gòu)設(shè)計 12
3.4.3軸的受力分析 12
3.4.4軸的強(qiáng)度校核 13
3.4.5軸上鍵的校核 13
3.4.6軸承的校核 14
4 其他機(jī)構(gòu)設(shè)計 16
4.1 豎直切菜機(jī)構(gòu)設(shè)計 16
4.1.1 設(shè)計要求 16
4.1.2 機(jī)構(gòu)設(shè)計 16
4.2 離心切菜機(jī)構(gòu)設(shè)計 16
4.2.1 設(shè)計要求 16
4.2.2 機(jī)構(gòu)設(shè)計 17
4.3切刀設(shè)計 17
4.4箱體結(jié)構(gòu)設(shè)計 19
4.4.1左箱體的設(shè)計 19
4.4.2 右箱體的設(shè)計 20
4.5安裝與調(diào)試 21
5 總 結(jié) 22
參考文獻(xiàn) 23
致 謝 24
24
1 緒論
1.1研究背景及意義
20世紀(jì)以來,我國食品工業(yè)較改革開放初期有了很大的發(fā)展,人民生活水平的提高,越來越多的食品和食品包裝提出了更高的要求。發(fā)展的基礎(chǔ),食品工業(yè)是食品機(jī)械不同類型的食品,以改善人民的物質(zhì)文化需要,人們從沉重的家務(wù)勞動中解脫出來,更多的時間在工作中去。發(fā)展先進(jìn)的食品機(jī)械、食品和快速的機(jī)械化和自動化程度是社會發(fā)展的必然。
隨著人們生活的重要組成部分,作為蔬菜食用的蔬菜,應(yīng)用廣,強(qiáng)度,減輕人民法院的,切割效率不同,目前市場上的蔬菜和不同風(fēng)格、功能、規(guī)格等。機(jī)械制造及自動化專業(yè)為國內(nèi)蔬菜的設(shè)計,通過了解和分析現(xiàn)有國內(nèi)蔬菜機(jī)結(jié)構(gòu)的對比分析,規(guī)劃預(yù)算,以蔬菜,在功能、結(jié)構(gòu)、外形美觀、造價合理等,方便和便宜。
1.2國內(nèi)外切菜機(jī)現(xiàn)狀
切菜機(jī)是1963年由法國發(fā)明家韋爾登發(fā)明制造的,并申請獲得專利。1971年,他設(shè)計了一個“神奇”的家庭主婦,她集切割,攪拌,混合和捏合許多功能。到目前,已發(fā)展蔬菜近50年的歷史,其功能更多。目前,有各種各樣的蔬菜,主要有:多功能旋轉(zhuǎn)離心的蔬菜,蔬菜,骰子光盤切割只顯示多,蔬菜等。
蔬菜的國內(nèi)生產(chǎn)廠家不多,現(xiàn)在的食品機(jī)械行業(yè)在中國的主要機(jī)型有JY Q550 PQT 580蔬菜,蔬菜,蔬菜chd40推,QD dlc2模擬人工智能切菜機(jī),蔬菜很多。
這些制造商的主要缺點(diǎn)是昂貴的菜機(jī)較少的功能和設(shè)計功能,高效率和緊湊的多用蔬菜是非常重要的。本文提出了一種多功能蔬菜和骰子,片,絲等功能,生產(chǎn)效率高,特別適合家庭使用。
1.3課題主要內(nèi)容
(1)根據(jù)收集的資料,分析存在的問題,確定設(shè)計目標(biāo),每個目標(biāo)分別構(gòu)思方案(不少于2個創(chuàng)意)。
(2)對所構(gòu)思的草案從科學(xué)性、經(jīng)濟(jì)性、可操作性等方面進(jìn)行初步評價,在此基礎(chǔ)上確定最佳方案。
(3)進(jìn)行各環(huán)節(jié)的具體設(shè)計,并完成以下內(nèi)容:
1)家用切菜機(jī)的設(shè)計計算;
2)家用切菜機(jī)裝配圖、零件圖繪制;
3)家用切菜機(jī)三維建模(或運(yùn)動仿真)。
2 總體方案設(shè)計
2.1功能及參數(shù)選擇
2.1.1功能選定
根據(jù)家庭常需切菜要求,本次設(shè)計的多功能切菜機(jī)選定如下功能:
(1)可把瓜薯類蔬菜切成片,絲,丁 ,曲線,菱形;
(2)還可把細(xì)長類蔬菜(韭菜,豆角等)切成段,以及把葉類蔬菜切成絲;
(3)菜的長短厚薄可調(diào)。
2.1.2參數(shù)選擇
技術(shù)參數(shù):
外形尺寸:850×430×600mm
電機(jī)功率:0.75kw
豎刀切速:300次/min;撥盤轉(zhuǎn)速:440r/min
2.2方案分析
刀具切削蔬菜的主要方式有兩種:往復(fù)直線運(yùn)動與轉(zhuǎn)動,因此提出以下兩種設(shè)計方案:
2.2.1方案一
蔬菜通過豎直或向上傾斜設(shè)置的料筒內(nèi),依靠重力自動向下運(yùn)動;刀具在水平或豎直平面作旋轉(zhuǎn)運(yùn)動,可通過連桿機(jī)構(gòu)、帶傳動、鏈傳動或齒輪傳動等實(shí)現(xiàn);切片切絲的轉(zhuǎn)換通過更換不同型號的刀具來實(shí)現(xiàn);利用重力或離心作用收集加工好的蔬菜,如下圖所示:
圖2-1 方案一簡圖
該方案工作原理為:電動轉(zhuǎn)動通過傳送帶帶動變速器工作從而帶動絲杠轉(zhuǎn)動,絲杠帶動推菜板將蔬菜推到刀具處,使得刀具對蔬菜進(jìn)行切削。通過物料和切刀之間產(chǎn)生的相對運(yùn)動來完成。蔬菜沿固定方向作進(jìn)給運(yùn)動,刀具在圓筒上進(jìn)行旋轉(zhuǎn)運(yùn)動,實(shí)現(xiàn)對蔬菜的切制。
2.2.2方案二
蔬菜通過傳送帶在水平方向作直線運(yùn)動;刀具做往復(fù)直線運(yùn)動,通過曲柄滑塊或凸輪機(jī)構(gòu)等實(shí)現(xiàn);切片切絲的轉(zhuǎn)換通過在蔬菜傳送線路上設(shè)置刀具的數(shù)目及刀具形狀來決定,切片厚度由蔬菜及刀具相對運(yùn)動速度決定;在傳送帶的末端設(shè)置收集機(jī)構(gòu)。如下圖所示:
圖2-2 方案二簡圖
2.3 方案選定與原理分析
根據(jù)前述選定的本機(jī)功能要求包含:
(1)可把瓜薯類蔬菜切成片,絲,丁,曲線,菱形;
(2)還可把細(xì)長類蔬菜(韭菜,豆角等)切成段,以及把葉類蔬菜切成絲;
(3)菜的長短厚薄可調(diào)。
因此選定方案二更合適,其工作原理如下:
(1)主要有機(jī)架、輸送帶、壓菜帶、切片機(jī)構(gòu)、調(diào)速箱或塔輪調(diào)速機(jī)構(gòu)組成
(2)離心式切片機(jī)構(gòu)用于果蔬類硬菜的切片,片厚可在一定范圍內(nèi)自由調(diào)節(jié),豎刀部分可將葉類軟菜或切好的片加工成不同規(guī)格的塊、丁、菱形等各種形狀。切菜長度通過 “可調(diào)偏心輪”在一定范圍內(nèi)任意調(diào)整。因豎刀模擬手工切菜原理,加工表面平整光滑,成型規(guī)則,被切蔬菜組織完好,保持新鮮。
3 動力及傳動機(jī)構(gòu)設(shè)計
3.1 電動機(jī)的選擇
電動機(jī)分交流電動機(jī)和直流電動機(jī)兩種。這些單位通常是三相交流電源沒有特殊要求,所以采用三相交流電機(jī)的三相異步電動機(jī)最負(fù)荷相對穩(wěn)定,長期以來存在的機(jī)器,只要等于或大于選定的發(fā)動機(jī)的發(fā)動機(jī)功率的發(fā)動機(jī)安全工作,不會過熱,因此通常不考慮電機(jī)的發(fā)熱和轉(zhuǎn)矩。因?yàn)槭卟藢儆跈C(jī)械,并沒有特殊的要求,所以你可以小于電機(jī)額定功率千瓦。
在同容量三相異步電動機(jī)3000 1500 1000,程度,和四個電機(jī)的同步轉(zhuǎn)速/min。同步轉(zhuǎn)速越高,越少的極對數(shù)的外部尺寸越小,價格就越低。但總的驅(qū)動裝置的電機(jī)轉(zhuǎn)速越高,更多的外部尺寸的傳輸成本的增加。同步轉(zhuǎn)速低,發(fā)動機(jī)的優(yōu)缺點(diǎn)正好相反。
本設(shè)計選擇電動機(jī)型號為Y802-4;
額定功率:0.75 kW
額定轉(zhuǎn)速:1390 r/min
最大轉(zhuǎn)矩:2.3 N·m
3.2帶傳動的設(shè)計
3.2.1帶一的設(shè)計
(1)確定計算功率Pca
載荷變動由[1]帶傳動工作情況系數(shù)表查得
(2)選擇帶型
根據(jù)計算功率Pca=0.33kW,小帶輪轉(zhuǎn)速r/min
因此選擇Z型窄V帶。
(3)確定帶輪基準(zhǔn)直徑
11)依據(jù)[1]初選小帶輪的基準(zhǔn)直徑mm
2)驗(yàn)算帶的速度v
在5~25m/s標(biāo)準(zhǔn)范圍之間
33)確定中心距a和帶的基準(zhǔn)長度。
依據(jù)帶傳動帶幾何關(guān)系,計算所需帶的基準(zhǔn)長度
mm
依據(jù)[1]基準(zhǔn)長度系列,選擇帶長為1700mm。
(4)驗(yàn)算主動輪上的包角。
(5)確定帶的根數(shù)。
(3.1)
式中包角系數(shù)依據(jù)[1]查得
長度系數(shù)依據(jù)[1]查得
單根V帶的基本額定功率查[2]得=0.294kW
查[2]得=0.03kW
根
故取1根Z型窄V帶。
(6)確定帶得預(yù)緊力。
N
(7)計算帶傳動作用在軸上的力。
N
結(jié)論:選擇Z型窄V帶,兩個可調(diào)帶輪的基準(zhǔn)直徑為,兩可調(diào)帶輪之間的中心距為500mm,帶長1700mm
3.2.2帶二的設(shè)計
(1)確定計算功率Pca
載荷變動由[1]帶傳動工作情況系數(shù)表查得
(2)選擇帶型
根據(jù)計算功率Pca=0.44kW,小帶輪轉(zhuǎn)速r/min
因此選擇Z型窄V帶。
(3)確定帶輪基準(zhǔn)直徑。
11)依據(jù)[1]初選小帶輪的基準(zhǔn)直徑mm
2)驗(yàn)算帶的速度v
在5~25m/s標(biāo)準(zhǔn)范圍之間
33)確定中心距a和帶的基準(zhǔn)長度。
依據(jù)帶傳動帶幾何關(guān)系,計算所需帶的基準(zhǔn)長度
mm
依據(jù)[1]基準(zhǔn)長度系列,選擇帶長為1800mm。
(4)驗(yàn)算主動輪上的包角。
(5)確定帶的根數(shù)。
(3.1)
式中包角系數(shù)依據(jù)[1]查得
長度系數(shù)依據(jù)[1]查得
單根V帶的基本額定功率查[2]得=0.294kW
查[2]得=0.03kW
根
故取1根Z型窄V帶。
(6)確定帶得預(yù)緊力。
N
(7)計算帶傳動作用在軸上的力。
N
結(jié)論:選擇Z型窄V帶,兩個可調(diào)帶輪的基準(zhǔn)直徑為,兩可調(diào)帶輪之間的中心距為615mm,帶長1800mm
3.3圓柱齒輪的設(shè)計
3.3.1選擇齒輪材料、熱處理方式和精度等級
考慮到本設(shè)計切菜機(jī)傳送件的功率,為一般機(jī)械,要求傳動平穩(wěn),噪聲小,故選用斜齒輪傳動。大齒輪選用45號鋼,小齒輪選用40Cr,調(diào)質(zhì)并表面淬火,HRC40~45,選用7級精度。選小齒輪齒數(shù)Z1=24, 大齒輪齒數(shù)Z2=48
3.3.2按齒面接觸強(qiáng)度設(shè)計
(1)確定公式內(nèi)的各計算數(shù)值
1)小齒輪傳遞的轉(zhuǎn)矩:
N·mm
2)初選,則。
3)查[2]由材料硬度選擇齒寬系數(shù)=1。
4)由表查得材料的彈性影響系數(shù)。
5)由圖按齒面硬度差得小齒輪的接觸疲勞強(qiáng)度極限;大齒輪的接觸疲勞強(qiáng)度極限
6)應(yīng)力循環(huán)次數(shù)
7)接觸疲勞壽命系數(shù)
8)計算接觸疲勞許用應(yīng)力
取失效概率為1%,安全系數(shù)S=1,則有:
(2)計算
1)試算小齒輪直徑,代入中較小的值:
mm
經(jīng)查表,取mm
2)計算圓周速度v
3)計算齒寬b
mm
4)計算齒寬與齒高之比
模數(shù)mm
齒高mm
5)計算載荷系數(shù)
根據(jù)v=0.565m/s,7級精度,由圖查得動載系數(shù);
直齒輪,;
由表查得使用系數(shù);
由表用差值法查得7級精度、小齒輪相對支撐對稱布置時;
由=10.67,查圖得;故載荷系數(shù)
3.3.3按齒根彎曲強(qiáng)度設(shè)計
彎曲強(qiáng)度設(shè)計公式為
確定公式中的各計算數(shù)值
由圖查得小齒輪彎曲疲勞強(qiáng)度極限 ;大齒輪彎曲疲勞強(qiáng)度極限
由圖取彎曲疲勞壽命系數(shù)
計算彎曲疲勞許用應(yīng)力
取彎曲疲勞安全系數(shù)S=1.4,
計算載荷系數(shù)K
查取齒形系數(shù)
由表查得
查取應(yīng)力校正系數(shù)
由表查得
計算大、小齒輪的,并加以比較
設(shè)計計算
根據(jù)模數(shù)系列查得m應(yīng)取1;
小齒輪齒數(shù)
大齒輪齒數(shù)
3.3.4幾何尺寸計算
(1)計算分度圓直徑
mm;mm;
(2)計算中心距
mm
(3)計算齒輪寬
mm
計算結(jié)果匯總:模數(shù)m=1mm;,中心距a=45mm;齒寬mm,mm;分度圓mm,mm。
同理可計算得第二級齒輪結(jié)果匯總?cè)缦拢?
模數(shù)m=1.25mm;,中心距a=60mm;齒寬mm,mm;
分度圓mm,mm。
3.4軸的設(shè)計
3.4.1軸徑的初步估算
由材料力學(xué)可知,軸受轉(zhuǎn)矩的作用時,其強(qiáng)度條件為:
mm (3.7)
式中:—軸剖面中最大扭轉(zhuǎn)剪應(yīng)力(MPa);
P—軸傳遞的功率(kW);
n—軸的轉(zhuǎn)速(r/min);
—許用扭轉(zhuǎn)剪應(yīng)力(MPa);
C—由許用扭轉(zhuǎn)剪 應(yīng)力確定的系數(shù);
d—軸的直徑(mm)。
查[2]得C的值為106。由公式(3.7)得:
mm
3.4.2軸的結(jié)構(gòu)設(shè)計
在軸的基本直徑定下以后,要進(jìn)行軸的結(jié)構(gòu)設(shè)計,定出軸的各部分的形狀和尺寸。根據(jù)切菜機(jī)的設(shè)計要求和前面的總體分析,軸的結(jié)構(gòu)如圖 3.2所示。
3.4.3軸的受力分析
由齒輪的計算可知:
切向力N
徑向力N
軸承總的支承反力為:
N
圖3.2 軸結(jié)構(gòu)圖和軸受力分析圖
3.4.4軸的強(qiáng)度校核
已知軸的彎矩和扭矩后,可針對某些危險截面(即彎矩和扭矩大而軸頸可能不足的截面)做彎扭合成強(qiáng)度校核計算。按第三強(qiáng)度理論,計算應(yīng)力
通常由彎矩所對稱循環(huán)變應(yīng)力。產(chǎn)生的彎曲應(yīng)力是對稱循環(huán)變應(yīng)力,而由扭矩所產(chǎn)生的扭轉(zhuǎn)切應(yīng)力則常常不是為了考慮兩者循環(huán)特性不同的影響,引入折合系數(shù),則計算應(yīng)力為
由于扭轉(zhuǎn)切應(yīng)力為脈動循環(huán)變應(yīng)力,所以=0.6。則軸的彎扭合成強(qiáng)度條件為
故軸的設(shè)計滿足要求。
3.4.5軸上鍵的校核
平鍵的兩側(cè)面是工作面,工作時兩側(cè)面受到擠壓,對于按標(biāo)準(zhǔn)選擇尺寸及鍵為常用材料的普通平鍵聯(lián)接其主要失效形式是鍵、軸槽和轂槽三者中強(qiáng)度最弱的工作面被壓潰。校核時,按工作面的平均擠壓力進(jìn)行計算,其公式為:
MPa (3.11)
式中:T—傳遞的轉(zhuǎn)矩(N·m);
d—軸的直徑(mm);
l—鍵的工作長度(mm),58mm;
、b—鍵的公稱長度和鍵寬(mm);
k—鍵與轂槽的接觸高度(mm);
—許用應(yīng)力(MPa)。
由式(3.11)得:
MPa
查[2]有沖擊載荷時=120~150MPa。顯然滿足強(qiáng)度條件。
綜上計算得設(shè)計參數(shù):軸材料選用40Cr;軸徑取16mm;
軸的總支反力
N,N;
鍵的壓應(yīng)力
MPa
3.4.6軸承的校核
滾動軸承的滾動體和滾傳動的疲勞,可能是最大的錯誤,特別是計算的預(yù)期壽命,如果需要進(jìn)一步的靜態(tài)強(qiáng)度。本次計算后的葉片軸承的齒輪箱中的齒輪軸兩側(cè)。其型號為7204C。
(1)求兩軸承的計算軸向力和。
由[2]得7204C派生軸向力,初取e=0.42 估算。
N
N
N
N
由[2]插值計算得、
再計算
N
N
N
N
確定 、 ,N、N
(2)求軸承當(dāng)量動載荷和。
由[2] 分別進(jìn)行查表或插值計算得徑向載荷系數(shù)和軸向載荷系數(shù):
軸承1
軸承2
因軸承運(yùn)轉(zhuǎn)中有中等沖擊載荷,按表13.6 取
N
N
(3)驗(yàn)算軸承壽命。
因?yàn)樗园摧S承1得受力大小驗(yàn)算:
h
已知本機(jī)器使用5年,一班制,預(yù)期壽命為:
h
故本軸承能夠滿足設(shè)計要求。
4 其他機(jī)構(gòu)設(shè)計
4.1 豎直切菜機(jī)構(gòu)設(shè)計
4.1.1 設(shè)計要求
因?yàn)樵谕耙r固定在垂直方向的調(diào)整機(jī)制,如難以切割的設(shè)計執(zhí)行的目標(biāo)函數(shù)不僅是原料切割工具,包括調(diào)整的形式,參數(shù)改變。
在工作的機(jī)構(gòu)直接接觸物料部分,出于安全原因,不僅需要無污染的部件材料的選擇,我們還必須注意的是分離的部分和機(jī)械傳動,減少了污染的危險。
4.1.2 機(jī)構(gòu)設(shè)計
本次豎直切菜機(jī)構(gòu)采用曲柄滑塊機(jī)構(gòu),其結(jié)構(gòu)尺寸如下圖示:
圖4-1 豎直切菜機(jī)構(gòu)
4.2 離心切菜機(jī)構(gòu)設(shè)計
4.2.1 設(shè)計要求
離心進(jìn)給為市面上常見的切菜機(jī)所采用的進(jìn)給方式,使菜品旋轉(zhuǎn)并于一定的力與固定的刀片接觸摩擦致蔬菜被切碎。使用離心原理的缺點(diǎn)是噪音大,機(jī)器震動大,而且體積很難壓縮。
4.2.2 機(jī)構(gòu)設(shè)計
本次離心切菜機(jī)構(gòu)采用撥菜板快速撥動蔬菜繞同比旋轉(zhuǎn),從而與布置在筒臂上的離心切刀接觸摩擦致蔬菜被切碎,其中最主要的結(jié)構(gòu)就是結(jié)構(gòu)撥菜板,其結(jié)構(gòu)尺寸如下圖示:
圖4-2 離心撥菜板
4.3切刀設(shè)計
刀頭的設(shè)計,特別是作為切削工具的工具,確定的形式。通過一個不同的工具,可以與不同的材料不同的切口,切口的形式。多功能蔬菜主要有兩種類型的刀和刀工具:新月。現(xiàn)綜述如下:
(1)新月型刀具
特別是對較軟的材料,如食品,蔬菜等。
新月工具分為單、雙刀兩種。如圖(5.1)在一定條件下材料的運(yùn)輸速度與刀具材料的切片厚度切片厚度在單一的本機(jī)時,1毫米厚片,用刀切。
用于加工(莖,葉,長細(xì)-尺寸,加工長度為2至30毫米。也可以切片,切絲。
包括兩個刀用于加工長莖,葉,細(xì)晶粒的材料,長度從1到16 mm也切片,切絲。
(a) 單 刀 (b) 雙 刀
圖4.2 新月型刀具
(2)圓盤刀具
特別是對材料的形狀不規(guī)則,短,硬材料,如土豆,洋蔥等).denn,當(dāng)?shù)镀谇衅螅?,一方面增加了刀具的剛性,另一方面,刀頭的切削工具可以不去掉料(材料為材料,以確保短期)的材料,厚度,均勻性和可靠性。
刀具包括刀桿和刀盤,兩個盤。如圖(5.2),它們之間的關(guān)系與月牙形刀厚度之間的單和雙刀盤刀具具有相同的厚度。的一個重要特性是它可以調(diào)整切片厚度。
它可以根據(jù)需要在圓盤刀片的厚度,一個工具,一個工具定位之間的表面和表面厚度可調(diào)墊片工具的高度調(diào)整,以改變的厚度。
雖然不銹鋼刀片的工具,但在隨后的水洗、干燥和油的保管,不能和其他硬件來摔東西的聲音。
圖4.3 圓盤刀具
本次設(shè)計結(jié)合上述新月型刀具和圓盤刀具的特點(diǎn)設(shè)計出一種新型刀具如下圖示:
共有4把刀片,可切片、塊、絲、丁、菱形、曲線型多種花樣:
圖4.4 豎直刀具
刀片參數(shù)如下:
切丁刀片切丁寬度:19毫米
菱形刀片切出厚度:16毫米
離心機(jī)切片厚度2-10毫米可調(diào)
傳送帶切片切絲厚度1-25毫米可調(diào)節(jié)
4.4箱體結(jié)構(gòu)設(shè)計
其主要功能是支持和對身體的不同部分,如傳動零件、軸、軸承等,在他們的正常位置,運(yùn)動和運(yùn)動精度,安全和密封盒內(nèi)的零件,而且不受外界環(huán)境影響,保護(hù)操作者的人身安全,但也有一定的隔離振動和熱schalld?mmung.das設(shè)計在實(shí)現(xiàn)上述功能箱,必要性的基礎(chǔ)上,改進(jìn)的形狀,外觀也是由人。
以整體重量的設(shè)計,材料的選擇熱塑性塑料的高密度聚乙烯(PE),優(yōu)良的耐化學(xué)腐蝕性、耐磨性、疲勞強(qiáng)度的名人。
4.4.1左箱體的設(shè)計
左箱結(jié)構(gòu)如圖4.6所示,主要作用是支承并與底盒的定義,作為部分的軸,定位附近的孔中的剛度,在雙方的老板孔,安裝螺栓,老板需要的機(jī)械加工表面。
考慮到成品收集、左箱外殼要避免出料口,錐形形狀的選擇結(jié)合與x軸是懸臂安裝在側(cè)箱需要“開放”,并向外延伸一段長度,組裝部件的內(nèi)部空間和調(diào)整提供。
圖4.6 左箱體
4.4.2 右箱體的設(shè)計
右箱體是本設(shè)計的基礎(chǔ)部件,不僅起到支撐作用,承受重量的其他部分也起著基礎(chǔ)性作用;之間的相對位置,以保證零件的尺寸和位置。對成型精度的情況下的選擇,這樣的精度必須在底箱和身體必須有足夠的剛度,則可增加壁厚,壁厚提高只有通過增加剛度,底盒,也太笨重,材料浪費(fèi),所以本設(shè)計中、下盒15毫米厚的肋,和的機(jī)會,增加局部剛度,從而提高連接剛度加固厚度的0.8倍,壁厚12毫米。
圖4.7 右箱體
4.5安裝與調(diào)試
(1)將機(jī)器放置在水平的工作場地,確保機(jī)器放置平穩(wěn)、可靠;
(2)使用前對各部件進(jìn)行檢查,緊固件是否在運(yùn)輸途中松動,開關(guān)及電源線是否因運(yùn)輸而破損,并及時采取相應(yīng)措施;
(3)檢查旋轉(zhuǎn)料筒內(nèi)是否有異物,如有異物清理干凈,以免引起刀具損壞;
(4)確定電源電壓與本機(jī)額定電壓相符合。在外罩接地標(biāo)記處可靠接地,將電源軟線伸長找專業(yè)電工將機(jī)器電源線接在全極斷開大開距電源上,接通電源,按下“ON”按鈕,檢查轉(zhuǎn)向,V帶輪的轉(zhuǎn)向與標(biāo)志一致為正確。否則,切斷電源,調(diào)整接線。
5 總 結(jié)
畢業(yè)設(shè)計是大學(xué)學(xué)習(xí)的一個非常罕見的結(jié)合,理論與實(shí)踐的學(xué)習(xí)機(jī)會,通過蔬菜設(shè)計的理論知識和實(shí)踐相結(jié)合,鍛煉了我的設(shè)計,應(yīng)用知識,解決問題的能力,而且我的文學(xué),設(shè)計手冊和設(shè)計技能和其他專業(yè)知識,而且對整個控制由地方?jīng)Q定的,以及自由裁量權(quán)的細(xì)節(jié),我的技能訓(xùn)練,經(jīng)驗(yàn)豐富和意志力、毅力、承受壓力的能力和不同程度的提高。
這是對我們所有人都希望我們的設(shè)計,也就是全面的,是有限的,但是,這是一個項(xiàng)目,我有很多的經(jīng)驗(yàn),更好的為我的頭腦的知識,也讓我在以后的工作和學(xué)習(xí),成就更大的適應(yīng)性,更多的溝通和理解。
如期完成畢業(yè)設(shè)計給了我很大的自信,我學(xué)到了知識,而且在專業(yè)發(fā)展,對未來的信心,但也發(fā)現(xiàn),許多的缺點(diǎn)和不足,但它留下了遺憾,沒有遺憾,不僅僅是我對我的新開地。我對技術(shù)的新技術(shù)和新設(shè)備的出現(xiàn),并試圖盡快對這些先進(jìn)的知識,更好的為祖國的四個現(xiàn)代化。
參考文獻(xiàn)
[1] 龔溎義, 羅圣國,李平林,張立乃,黃少顏.機(jī)械設(shè)計課程設(shè)計指導(dǎo)書[M].第二版. 北京:高等教育出版社,2009
[2] 吳克堅,于曉紅,錢瑞明. 機(jī)械設(shè)計 [M].第一版.北京:高等教育出版社,2003
[3] 殷涌光,丁慶宇,羅陳,牟光慶. 食品機(jī)械與設(shè)備 [TS].北京:化學(xué)工業(yè)出版社,2007
[4] 龔溎義,潘沛霖,陳秀,嚴(yán)國良. 機(jī)械設(shè)計課程設(shè)計圖冊 [M].北京:高等教育出版社,2009
[5] 孔凌嘉,毛謙德. 簡明機(jī)械設(shè)計手冊 [M].北京:北京理工大學(xué)出版社,2008
[6] Neil Sclater,Nicholas P.Chironis. 機(jī)械設(shè)計實(shí)用機(jī)構(gòu)與裝置圖冊 [M]. 鄒平.北京:機(jī)械工業(yè)出版社,2007
[7] 王連明,宋寶玉.機(jī)械設(shè)計課程設(shè)計[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2005.
[8] 王知行,鄧宗權(quán).機(jī)械原理[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2002.
[9] 章軍,張念龍.高效通用型蔬菜加工機(jī)的研制[J].食品與機(jī)械,2002,(05).
[10] 劉小龍,劉晨,伊明?買買提,梁勤安,穆曉路.6LQT-550型離心式飼用甜菜切絲(片)機(jī)[J].農(nóng)機(jī)化,2004,(04).
[11] 章軍.多功能蔬菜加工機(jī)的研制[J].糧油加工與食品機(jī)械,2002,(05)
[12] M.YATA,C.YOSHIDA .Identification and Charactification of Molecular Species of Collagen in Fish Skin.[J] Food Sci.2001,66(2)
[13] Werner J Glantschnis. Green design: An introduction to issues and challenges [J] IEEE Transactions on Components. Packaging and Manufacturing Technology.Part-A.1994.17(4)
致 謝
大學(xué)生活即將結(jié)束,在這短短的幾年里,我有許多朋友,嚴(yán)格教學(xué)的老師的幫助。他的設(shè)計是成功的,沒有他們的幫助和指導(dǎo)老師的指導(dǎo),在所有和我的畢業(yè)設(shè)計指導(dǎo)和幫助的老師和同學(xué)表示衷心的感謝。
首先,對設(shè)計的老師表示最誠摯的謝意。在自己的緊張,我們?nèi)栽谂Φ臅r候,我們努力學(xué)習(xí),老師要求我們幫助。在整個設(shè)計過程中,對現(xiàn)場實(shí)際借款的證據(jù),他指示我學(xué)習(xí)書中不僅學(xué)到了很多知識,學(xué)習(xí)操作,并了解如何設(shè)計的重點(diǎn),論文和編寫的時間,而在畢業(yè)設(shè)計過程中,我們和他們在一起的不同的設(shè)計問題。
其次,這個設(shè)計幫助學(xué)生、教師的發(fā)展過程中,非常感謝你,你給了我很大的幫助和無私的關(guān)懷,更重要的是,為我們提供了很多技術(shù)方面的數(shù)據(jù)在你的感謝,沒有這些數(shù)據(jù)是不是一個完整的文件。
學(xué)生也幫助了我,感謝。
總之,教師和學(xué)生一起設(shè)計,使設(shè)計的結(jié)果在一個月,這是一個很好的合作,一個偉大的教會我許多東西,我一輩子的財富給我,我想再次感謝老師和學(xué)生!
南華大學(xué)機(jī)械工程學(xué)院畢業(yè)設(shè)計(論文)
Study and Improvement for Slice Smoothness in Slicing Machine of Lotus Root
De-yong YANG ,Jian-ping HU , En-zhu WEI , Heng-qun LEI ,and Xiang-ci KONG
Key Laboratory of Modern Agricultural Equipment and Technology
Ministry of Education Jiangsu Province Jiangsu University . Zhenjiang .
Jiangsu Province .P.R.China212013
Tel.: +86-511-8;Fax:+86-511-8
yangdy@163.com
Jinhu Agricultural Mechanization Technology Extension Station . Jinhu county
Jiangsu Province .P.R.China 211600
Abstract: Concerning the problem of the low cutting quality and the bevel edge in the piece of lotus root, the reason was analyzed and the method of improvement was to reduce the force in the vertical direction of link to knife. 3D parts and assemblies of cutting mechanism in slicing machine of lotus were created under PRO/E circumstance. Based on virtual prototype technology, the kinematics and dynamics analysis of cutting mechanism was simulated with ADAMS software, the best slice of time that is 0.2s~0.3s was obtained,and the curve of the force in the vertical direction of link to knife was obtained. The vertical force of knife was changed according with the change of the offset distance of crank. Optimization results of the offest distance of crank showed the vertical force in slice time almost is zero when the offset distance of crank is -80mm. Tests show that relative error of thickness of slicing is less than 10% after improved design, which is able to fully meet the technical requirements.
Keywords: lotus root; cutting mechanism; smoothness; optimization
1 Introduction
China is a country of producing lotus toot, lotus root system of semi-finished products of domestic consumption and external demand for exports is relatively large. In order to improve efficiency, reduce labor intensity, the group work, drawing on the principle of the artificial slice based on the design and development of a new type of lotus root slice (Bi Wei and Hu Jianping, 2006). This new type of slice solved easily broken cutting, stick knives, hard to clean up and other issues, but the process appears less smooth cutting, and some have a problem of hypotenuse piece of root. In this paper, analyzing cutting through the course of slice knife, the reasons causing hypotenuse was found, and the corresponding improvement of methods was proposed and was verified by the experiments.
2 Structure of Cutting Mechanism of Slicing Machine
Cutting mechanism of the quality of slice lotus root is the core of the machine, the performance of its direct impact on the quality of slice. Virtual prototyping of cutting mechanism of slice lotus root (Fig.1) was built by using PRO/E, and mechanism diagram of the body is shown in Fig.2. Cutting principle of lotus slicer adopted in the cardiac type of slider-crank mechanism was to add materials inside, which can be stacked several lotus root, lotus root to rely on the upper part of the self and the lower part of the lotus press down, so that it arrives in the material under the surface of the baffle. While slider-crank mechanism was driven by motor, the knife installed on the slider cut lotus root. In the slice-cutting process it was found that parallelism of the surface at both ends of part of piece lotus was not enough, which can not meet the technical requirements for processing.
Fig.1 Virtual prototyping of cutting mechanism
Fig.2 Diagram of cutting mechanism
Study and improvement for slice smoothness in slicing machine of lotus root.
3 The Cause of the Bevel Edge
Uneven thickness and bevel edge of cutting were related with forces on the slice knife in the process of cutting. In accordance with cutting mechanism (Fig.2), without taking into account the friction and weight, the direction of force F of point C was along the link. Force F may be decomposed with a horizontal direction force component and a vertical direction force component. The horizontal force component pushed the knife moving for cutting, but the vertical force component caused the knife moving along the vertical direction. Because of the gap between the slider and the rail, the vertical force component made the blade deforming during the movement, and knife could not move along the horizontal direction to cut lotus root, which caused the emergence of bevel edge. Thus, to reduce or eliminate the vertical force component in the cutting-chip was key to solve the problem of bevel edge and improve the quality of cutting.
When crank speed was 69~90r/min, the horizontal and vertical direction of the force curve of point C connecting link and the blade hinge are shown in Fig.3 and Fig.4 respectively. As can be seen from the chart, with the crank speed improvement the horizontal and vertical direction of the force in point C also increased. The horizontal force changed relatively stable during 0s~0.2s, which was conducive to cutting lotus, but the vertical force increased gradually. The more the vertical force was, the more detrimental to the quality cutting.
Fig.3 Horizontal force of C
Fig.4 Vertical force of C
4 Simulation and Optimization
If improving flatness of the slicer, the structure was optimized to reduce the vertical force component, so as far as possible the level of cutting blade.
When crank speed was 60~90r/min the velocity curve and acceleration curve of the knife center of mass are shown in Fig.5 and Fig.6 respectively. According to the speed curve, the speed of the knife center of mass was relatively large in a period of 0.2s~0.3s. In accordance with the requirements that the knife should have a higher speed during cutting lotus, so this period time was more advantageous to cutting than other terms. According to acceleration curve. When calculates by one cycle, the acceleration value was relatively quite small in the period of time, 0.15s~0.3s compared with other time section. Which indicated that the change of velocity was relatively small, simultaneously the force of inertia was small, and the influence of vibration caused by the force was small to the slicer. Therefore,this period of time, 0.2s~0.3s, to cut root piece was advantageous in enhances the cutting quality of lotus root piece.
Fig.5 Velocity curve of center of mass of knife
Fig.6 Acceleration curve of center of mass of knife
Based on the above analysis, the vertical force component between link and the knife was the main reason for bevel edge. According to the characteristics of slider-crank mechanism, reducing the vertical force on the knife in the period of cutting time by altering crank offest was tried to enhance the quality of the cutting. When crank speed was 60r/min, the crank eccentricity was optimized. When the offest of the crank was 40mm, 20mm, 0mm, -20mm, -40mm, -80mm, -120mm respectively, the mechanism was simulated and the vertical force curves under different crank eccentricity were obtained, as shown in Fig.7.
Fig.7 vertical force curves in different offest
Fig.7 indicates that: When the eccentricity was positive, the vertical force on point C increased gradually in 0.2s~0.3s with the increase of crank oddest: When the eccentricity was negative, the force decreased gradually first and then begun to increase along with -80mm. So when the offest was -80mm, the numerical of the force in 0.2s~0.3s achieved the minimum and the quality of cutting was the best.
When the crank rotated in the other speed, there were the same optimization results. Fig.8 show the curve of vertical force in the offest of 0mm and -80mm when the speed of crank was 80r/min. From the Fig.8 it is obvious that vertical direction of the force of point C in 0.2s~0.3s reduced a lot when the eccentricity is -80mm. Therefore, the vertical force could be reduced by optimizing the slider-crank mechanism of eccentricity.
Fig.8 Vertical force of C
5 Experimental Analysis
The relative error of thickness of lotus root piece reflects the quality of cutting. Which is generally controlled of 10%. There always existed bevel edge phenomenon and the relative error of thickness was about 15% before structural optimization and improvement, which was difficult to meet the technical requirements. The offset in the slider-crank mechanism was optimized, and its structure was improved according to the results of optimization. After improvement cutting test were done in the conditions of crank speed for 80~110r/min and statistical data about the relative error of thickness was shown in Table.1. Four levels were separated in the experiment, three times for each level.
Table 1 Relative error of thickness of slicing
NO
Crank speed (r/min)
80
90
100
110
1
6.6%
6.4%
8.2%
9.5%
2
5.3%
6.1%
8.5%
9.2%
2
6.4%
7.9%
7.9%
9.4%
Average
6.1%
6.8%
8.2%
9.4%
It is derived from Table.1 that the relative error of the thickness of slices could meet the technical indicators when the crank speed was 80~110r/min, especially in the crank rotation speed 80r/min, 90r/min the relative error of thickness was less than 7%,and high quality was achieved.
6 Conclusion
The vertical force component acted on the knife in the process of cutting was the main reason for surface formation and bevel edge, so the key of improving the quality was to reduce the vertical force. Through slice knife and velocity acceleration simulation analysis the best time for slicing, 0.2s~0.3s, was obtained. By optimizing the offset of the crank the vertical force during cutting time was greatly reduced when the offset was -80mm. Experiments were made after improving the design of lotus root slicer, which results showed that by changing the offset of the crank, the relative error of the thickness could fully meet the requirements of less than 10%. So the problem was basically solved that the flatness was not ideal and was the issue of bevel edge.1
References
[1] Wei,B . jianping,H.: Study of lotus root slicing techniques and design of new model,Journal of agricultural mechanization research (12),112-114(2006)(in Chinese)
[2] Enzhu, w.:the simulation and optimization on the new slicing machine of lotus root based on virtual prototype technology .jiangsu university [2008)[in Chinese)
[3] Ce ,Z .:mechanical dynamics .higher education press[1999)
[4]Xiuning ,C.:optimal design of machinery .zhejiang university press[1999)
[5]Liping,C.,yunqing,Z.,weiqun,R.: dynamic analysis of mechanical systems and application Guide ADAMS . Tsinghua university press ,Beijing(2005)
Page 8 of 8