人教版九級(jí)上冊(cè)數(shù)學(xué)課本知識(shí)點(diǎn)歸納.doc
《人教版九級(jí)上冊(cè)數(shù)學(xué)課本知識(shí)點(diǎn)歸納.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教版九級(jí)上冊(cè)數(shù)學(xué)課本知識(shí)點(diǎn)歸納.doc(18頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
______________________________________________________________________________________________________________ 九年級(jí)上冊(cè)數(shù)學(xué)課本知識(shí)點(diǎn)歸納 第21章一元二次方程 一、學(xué)習(xí)目標(biāo) 1、理解一元二次方程的概念 2、學(xué)會(huì)一元二次方程的解法 3、了解方程的根與系數(shù)的關(guān)系 4、掌握一元二次方程的實(shí)際應(yīng)用 二、重點(diǎn) 一、一元二次方程 1、一元二次方程 含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的整式方程叫做一元二次方程。 2、一元二次方程的一般形式,其中叫做二次項(xiàng),a叫做二次項(xiàng)系數(shù);bx叫做一次項(xiàng),b叫做一次項(xiàng)系數(shù);c叫做常數(shù)項(xiàng)。 二、降次----解一元二次方程 1.降次:把一元二次方程化成兩個(gè)一元一次方程的過程(不管用什么方法解一元二次方程,都是要一元二次方程降次) 2、直接開平方法 利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用于解形如x2=b或的一元二次方程。根據(jù)平方根的定義可知,是b的平方根,當(dāng)時(shí),,,當(dāng)b<0時(shí),方程沒有實(shí)數(shù)根。 3、配方法:配方法的理論根據(jù)是完全平方公式,把公式中的a看做未知數(shù)x,并用x代替,則有。 配方法解一元二次方程的步驟是:①移項(xiàng)、②配方(寫成平方形式)、③用直接開方法降次、④解兩個(gè)一元一次方程、⑤判斷2個(gè)根是不是實(shí)數(shù)根。 4、公式法:公式法是用求根公式,解一元二次方程的解的方法。 一元二次方程的求根公式: 當(dāng)>0時(shí),方程有兩個(gè)實(shí)數(shù)根。 當(dāng)=0時(shí),方程有兩個(gè)相等實(shí)數(shù)根。 當(dāng)<0時(shí),方程沒有實(shí)數(shù)根。 5、因式分解法:先將一元二次方程因式分解,化成兩個(gè)一次式的乘積等于0的形式,再使這兩個(gè)一次式分別等于0,從而實(shí)現(xiàn)降次,這種解叫因式分解法。這種方法簡(jiǎn)單易行,是解一元二次方程最常用的方法。 三、一元二次方程根的判別式 根的判別式:一元二次方程中,叫做一元二次方程的根的判別式,通常用“”來表示,即 四、一元二次方程根與系數(shù)的關(guān)系 如果方程的兩個(gè)實(shí)數(shù)根是,由求根公式 可算出,。 第22章 二次函數(shù) 一、學(xué)習(xí)目標(biāo) 1、理解二次函數(shù)的概念 2、學(xué)會(huì)畫二次函數(shù)的圖象 3、掌握二次函數(shù)的性質(zhì) 4、學(xué)會(huì)函數(shù)圖象的平移 5、能夠運(yùn)用二次函數(shù)解決實(shí)際問題 二、重點(diǎn) 1、二次函數(shù)的解析式 ①一般式: (a、b、c為常數(shù)),則稱y為x的二次函數(shù)。 ②頂點(diǎn)式: ③交點(diǎn)式(與x軸): 2、拋物線的性質(zhì) ①二次函數(shù)的圖像是一條永無止境的拋物線。 ②a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下。a還可以決定開口大小,a越大開口就越小,a越小開口就越大。 ③拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線. ④對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0) ⑤拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為P ( ) 當(dāng)時(shí),P在y軸上;當(dāng)時(shí),P在x軸上。 ⑥二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。 當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。 |a|越大,則拋物線的開口越小。 ⑦一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置: Ⅰ.當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左; 因?yàn)槿魧?duì)稱軸在左邊則對(duì)稱軸小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同號(hào) Ⅱ.當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。因?yàn)閷?duì)稱軸在右邊則對(duì)稱軸要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要異號(hào) 事實(shí)上,b有其自身的幾何意義:拋物線與y軸的交點(diǎn)處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值??赏ㄟ^對(duì)二次函數(shù)求導(dǎo)得到。 ⑧常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。拋物線與y軸交于(0,c) ⑨二次函數(shù)的增減性 拋物線,若a>0,當(dāng)時(shí),y隨x的增大而減??;當(dāng)時(shí),y隨x的增大而增大.若a<0,當(dāng)時(shí),y隨x的增大而增大;當(dāng)時(shí),y隨x的增大而減小.拋物線的最值:如果a>0(a<0),則當(dāng)時(shí),y最小(大)值=. 3、二次函數(shù),, (各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表: 函數(shù)解析式 開口方向 對(duì)稱軸 頂點(diǎn)坐標(biāo) 當(dāng)時(shí) 開口向上 當(dāng)時(shí) 開口向下 (軸) (0,0) (軸) (0, ) (,0) (,) () 4、二次函數(shù)與一元二次方程 二次函數(shù)(以下稱函數(shù)) 當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程), 即)此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根;函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。 拋物線的圖象與坐標(biāo)軸的交點(diǎn): Δ>0,圖象與x軸交于兩點(diǎn):(,0)和(,0); Δ=0,圖象與x軸交于一點(diǎn):(,0); Δ<0,圖象與x軸無交點(diǎn); 5.用待定系數(shù)法求二次函數(shù)的解析式 (1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式: (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸或極大(?。┲禃r(shí),可設(shè)解析式為頂點(diǎn)式:. (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:. 6.二次函數(shù)的應(yīng)用 二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn). 第23章 旋轉(zhuǎn) 一、學(xué)習(xí)目標(biāo) 1、理解旋轉(zhuǎn)、旋轉(zhuǎn)中心、旋轉(zhuǎn)角、中心對(duì)稱的概念 2、學(xué)會(huì)找旋轉(zhuǎn)角及畫中心對(duì)稱圖形 3、掌握中心對(duì)稱的性質(zhì) 4、學(xué)會(huì)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo) 5、了解圖形旋轉(zhuǎn)的應(yīng)用 二、重點(diǎn) 一、旋轉(zhuǎn) 1、定義:把一個(gè)圖形繞某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),其中O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。 2、性質(zhì) (1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。 (2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。 ⑶ 旋轉(zhuǎn)前后的圖形全等。 二、中心對(duì)稱 1、定義:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心。 2、性質(zhì) (1)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。 (2)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分。 (3)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或在同一直線上)且相等。 3、判定:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱。 4、中心對(duì)稱圖形:把一個(gè)圖形繞某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)店就是它的對(duì)稱中心。 5、關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的特征:兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)的符號(hào)相反,即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P’(-x,-y) 6、關(guān)于x軸對(duì)稱的點(diǎn)的特征:兩個(gè)點(diǎn)關(guān)于x軸對(duì)稱時(shí),它們的坐標(biāo)中,x相等,y的符號(hào)相反,即點(diǎn)P(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為P’(x,-y)。 7、關(guān)于y軸對(duì)稱的點(diǎn)的特征:兩個(gè)點(diǎn)關(guān)于y軸對(duì)稱時(shí),它們的坐標(biāo)中,y相等,x的符號(hào)相反,即點(diǎn)P(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為P’(-x,y)。 第24章 圓 一、學(xué)習(xí)目標(biāo) 1、理解圓的幾何定義與圓有關(guān)的概念 2、掌握垂徑定理、切線的判定定理、切線長(zhǎng)定理以及圓周角定理 3、學(xué)會(huì)判斷點(diǎn)、直線、圓與圓的位置關(guān)系 4、會(huì)計(jì)算弧長(zhǎng)、扇形的面積及圓錐的側(cè)面積和全面積 二、重點(diǎn) 一、圓的相關(guān)概念 1、圓的定義:在一個(gè)個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點(diǎn)O叫做圓心,線段OA叫做半徑。 2、圓的幾何表示:以點(diǎn)O為圓心的圓記作“⊙O”,讀作“圓O” 二、弦、弧等與圓有關(guān)的定義 (1)弦:連接圓上任意兩點(diǎn)的線段叫做弦。(如圖中的AB) (2)直徑:經(jīng)過圓心的弦叫做直徑。(如途中的CD) 直徑等于半徑的2倍。 (3)半圓:圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫做半圓。 (4)弧、優(yōu)弧、劣?。簣A上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。弧用符號(hào)“⌒”表示,以A,B為端點(diǎn)的弧記作“”,讀作“圓弧AB”或“弧AB”。大于半圓的弧叫做優(yōu)?。ǘ嘤萌齻€(gè)字母表示);小于半圓的弧叫做劣弧(多用兩個(gè)字母表示) 三、垂徑定理及其推論 1.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。 推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。(2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧。(3)平分弦所對(duì)的一條弧的直徑垂直平分弦,并且平分弦所對(duì)的另一條弧。 推論2:圓的兩條平行弦所夾的弧相等。 四、圓的對(duì)稱性 1、圓的軸對(duì)稱性:圓是軸對(duì)稱圖形,經(jīng)過圓心的每一條直線都是它的對(duì)稱軸。 2、圓的中心對(duì)稱性:圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。 五、弧、弦、弦心距、圓心角之間的關(guān)系定理 1、圓心角:頂點(diǎn)在圓心的角叫做圓心角。 2、弦心距:從圓心到弦的距離叫做弦心距。 3、弧、弦、弦心距、圓心角之間的關(guān)系定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦想等,所對(duì)的弦的弦心距相等。 推論:在同圓或等圓中,如果兩個(gè)圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。 六、圓周角定理及其推論 1、圓周角:頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角。 2、圓周角定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。 推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。 推論2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。 推論3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。 七、點(diǎn)和圓的位置關(guān)系 設(shè)⊙O的半徑是r,點(diǎn)P到圓心O的距離為d,則有: d- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
32 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 人教版九級(jí) 上冊(cè) 數(shù)學(xué) 課本 知識(shí)點(diǎn) 歸納
鏈接地址:http://www.szxfmmzy.com/p-1279301.html