《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí)精準(zhǔn)提分 第二篇 重點(diǎn)專題分層練中高檔題得高分 第12練 數(shù)列的基本運(yùn)算及性質(zhì)課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí)精準(zhǔn)提分 第二篇 重點(diǎn)專題分層練中高檔題得高分 第12練 數(shù)列的基本運(yùn)算及性質(zhì)課件.ppt(50頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第二篇重點(diǎn)專題分層練,中高檔題得高分,第12練數(shù)列的基本運(yùn)算及性質(zhì)小題提速練,,明晰考情 1.命題角度:考查等差數(shù)列、等比數(shù)列基本量的計(jì)算,考查數(shù)列的通項(xiàng)及求和. 2.題目難度:中檔難度或較難難度.,核心考點(diǎn)突破練,,,欄目索引,,,易錯(cuò)易混專項(xiàng)練,高考押題沖刺練,考點(diǎn)一等差數(shù)列與等比數(shù)列,要點(diǎn)重組(1)在等差數(shù)列中,若mnpq(m,n,p,qN*),則amanapaq. (2)若an是等差數(shù)列,則 也是等差數(shù)列. (3)在等差數(shù)列an中,Sn,S2nSn,S3nS2n也成等差數(shù)列. (4)在等比數(shù)列中,若mnpq(m,n,p,qN*),則amanapaq. (5)在等比數(shù)列中,Sn,S2n
2、Sn,S3nS2n也成等比數(shù)列(當(dāng)q1時(shí),n不能為偶數(shù)).,,核心考點(diǎn)突破練,1.(2018全國(guó))記Sn為等差數(shù)列an的前n項(xiàng)和,若3S3S2S4,a12,則a5等于 A.12 B.10 C.10 D.12,,解析設(shè)等差數(shù)列an的公差為d,由3S3S2S4,,答案,解析,將a12代入上式,解得d3, 故a5a1(51)d24(3)10. 故選B.,2.已知等差數(shù)列an的前n項(xiàng)和為Sn,a91,S180,當(dāng)Sn取最大值時(shí)n的值為 A.7 B.8 C.9 D.10,答案,解析,,解析方法一設(shè)公差為d,,解得a117,d2, 所以Sn17nn(n1)n218n, 當(dāng)n9時(shí),Sn取得最大值,故選C.,
3、所以a1a18a9a100,所以a101, 即數(shù)列an中前9項(xiàng)為正值,從第10項(xiàng)開始為負(fù)值, 故其前9項(xiàng)之和最大.故選C.,3.已知Sn是各項(xiàng)均為正數(shù)的等比數(shù)列an的前n項(xiàng)和,a764,a1a5a320,則S5等于 A.31 B.63 C.16 D.127,,解析設(shè)公比為q(q0),因?yàn)閍1a5a320,,答案,解析,a30,a34, a7a3q464,q2,a11.,4.設(shè)an是公比為q的等比數(shù)列,|q|1,令bnan1(n1,2,),若數(shù)列bn有連續(xù)四項(xiàng)在集合53,23,19,37,82中,則6q____.,解析由題意知,數(shù)列bn有連續(xù)四項(xiàng)在集合53,23,19,37,82中, 說明an有
4、連續(xù)四項(xiàng)在集合54,24,18,36,81中, 由于an中連續(xù)四項(xiàng)至少有一項(xiàng)為負(fù),q1, an的連續(xù)四項(xiàng)為24,36,54,81,,答案,解析,9,考點(diǎn)二數(shù)列的通項(xiàng)與求和,方法技巧(1)已知數(shù)列的遞推關(guān)系,求數(shù)列的通項(xiàng)時(shí),通常利用累加法、累乘法、構(gòu)造法求解.,,答案,解析,,答案,解析,,解析數(shù)列an滿足a1a2a3an (nN*), 當(dāng)n1時(shí),a12; 當(dāng)n2時(shí),a1a2a3an1 , 可得an22n1,n2, 當(dāng)n1時(shí),a12滿足上式,,,,7.(2018全國(guó))記Sn為數(shù)列an的前n項(xiàng)和.若Sn2an1,則S6______.,解析Sn2an1,當(dāng)n2時(shí),Sn12an11, anSnS
5、n12an2an1(n2), 即an2an1(n2). 當(dāng)n1時(shí),a1S12a11,得a11. 數(shù)列an是首項(xiàng)a11,公比q2的等比數(shù)列,,答案,解析,63,S612663.,8.在已知數(shù)列an中,a11,Sn為數(shù)列an的前n項(xiàng)和,且當(dāng)n2時(shí),有 1成立,則S2 017________.,答案,解析,考點(diǎn)三數(shù)列的綜合應(yīng)用,方法技巧(1)以函數(shù)為背景的數(shù)列問題、可以利用函數(shù)的性質(zhì)等確定數(shù)列的通項(xiàng)an、前n項(xiàng)和Sn的關(guān)系. (2)和不等式有關(guān)的數(shù)列問題,可以利用不等式的性質(zhì)、基本不等式、函數(shù)的單調(diào)性等求最值來解決.,9.已知函數(shù)f(x)x2ax的圖象在點(diǎn)A(0,f(0))處的切線l與直線2xy20
6、平行,若數(shù)列 的前n項(xiàng)和為Sn,則S20的值為,,答案,解析,解析因?yàn)閒(x)x2ax,所以f(x)2xa, 又函數(shù)f(x)x2ax的圖象在點(diǎn)A(0,f(0))處的切線l與直線2xy20平行, 所以f(0)a2,所以f(x)x22x,,10.已知等差數(shù)列an的前n項(xiàng)和Snn2bnc,等比數(shù)列bn的前n項(xiàng)和Tn3nd,則向量a(c,d)的模為 A.1 B. C. D.無法確定,解析由等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式知, c0,d1, 所以向量a(c,d)的模為1.,,答案,解析,11.設(shè)等比數(shù)列an滿足a1a310,a2a45,則a1a2an的最大值為_____.,答案,解析,64,解析由已
7、知a1a310,a2a4a1qa3q5,,,又nN*,所以當(dāng)n3或4時(shí),a1a2an取最大值為2664.,12.已知函數(shù)f(x)3|x5|2|x2|,數(shù)列an滿足a1<2,an1f(an),nN*.若要使數(shù)列an成等差數(shù)列,則a1的取值集合為___________________.,答案,解析,,所以若數(shù)列an成等差數(shù)列, 則當(dāng)a1為直線yx11與直線yx11的交點(diǎn)的橫坐標(biāo), 即a111時(shí),數(shù)列an是以11為首項(xiàng),11為公差的等差數(shù)列; 當(dāng)f(a1)a1,即5a119a1或a111a1,,1.在數(shù)列an中,a11,a22,當(dāng)整數(shù)n1時(shí),Sn1Sn12(SnS1)都成立,則S15等于 A.210
8、 B.211 C.224 D.225,,易錯(cuò)易混專項(xiàng)練,解析當(dāng)n1時(shí),Sn1SnSnSn12, an1an2,n2,an1an2,n2. 數(shù)列an從第二項(xiàng)開始組成公差為2的等差數(shù)列,,,答案,解析,2.已知數(shù)列an滿足:an1an(12an1),a11,數(shù)列bn滿足:bnanan1,則數(shù)列bn的前2 017項(xiàng)的和S2 017______.,答案,解析,3.已知數(shù)列an滿足a133,an1an2n,則 的最小值為____.,答案,解析,解析由題意,得a2a12, a3a24,,anan12(n1),n2, 累加整理可得ann2n33,n2, 當(dāng)n1時(shí),a133也滿足,,解題秘籍(1)利用anS
9、nSn1尋找數(shù)列的關(guān)系,一定要注意n2這個(gè)條件. (2)數(shù)列的最值問題可以利用基本不等式或函數(shù)的性質(zhì)求解,但要考慮最值取到的條件.,1.等差數(shù)列an的首項(xiàng)為1,公差不為0.若a2,a3,a6成等比數(shù)列,則an的前6項(xiàng)和為 A.24 B.3 C.3 D.8,,解析由已知條件可得a11,d0,,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,,高考押題沖刺練,解得d2.,2.(2017浙江)已知等差數(shù)列an的公差為d,前n項(xiàng)和為Sn,則“d0”是“S4S62S5”的 A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件,,答案,解析,1,2,3,4,5,
10、6,7,8,9,10,11,12,解析方法一數(shù)列an是公差為d的等差數(shù)列, S44a16d,S55a110d,S66a115d, S4S610a121d,2S510a120d. 若d0,則21d20d,10a121d10a120d, 即S4S62S5. 若S4S62S5,則10a121d10a120d, 即21d20d, d0.“d0”是“S4S62S5”的充要條件. 故選C.,1,2,3,4,5,6,7,8,9,10,11,12,方法二S4S62S5S4S4a5a62(S4a5) a6a5a5da5d0. “d0”是“S4S62S5”的充要條件. 故選C.,1,2,3,4,5,6,7,8,9
11、,10,11,12,3.已知數(shù)列an滿足an1an2,a15,則|a1||a2||a6|等于 A.9 B.15 C.18 D.30,,解析由an1an2可得數(shù)列an是等差數(shù)列,公差d2, 又a15,所以an2n7, 所以|a1||a2||a3||a4||a5||a6|53113518.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,4.已知兩個(gè)等差數(shù)列an和bn的前n項(xiàng)和分別為An和Bn,且 則使得 為整數(shù)的正整數(shù)n的個(gè)數(shù)是 A.2 B.3 C.4 D.5,,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,,解析設(shè)Sn為an的前n項(xiàng)和,Sna1a2an2
12、n1,,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,,解析設(shè)S2k,則S43k, 由數(shù)列an為等比數(shù)列(易知數(shù)列an的公比q1), 得S2,S4S2,S6S4為等比數(shù)列, 又S2k,S4S22k,S6S44k,,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,7.設(shè)an是任意等差數(shù)列,它的前n項(xiàng)和、前2n項(xiàng)和與前4n項(xiàng)和分別為X,Y,Z,則下列等式中恒成立的是 A.2XZ3Y B.4XZ4Y C.2X3Z7Y D.8XZ6Y,,解析根據(jù)等差數(shù)列的性質(zhì)X,YX,S3nY,ZS3n成等差數(shù)列, S3n3Y3X, 又2(S3nY)(YX)(ZS3n), 4Y6
13、XYXZ3Y3X, 8XZ6Y.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,解析由an1ann1,得an1ann1, 則a2a111, a3a221, a4a331, , anan1(n1)1,n2. 以上等式相加,得ana1123(n1)n1,n2,把a(bǔ)11代入上式得,,1,2,3,4,5,6,7,8,9,10,11,12,當(dāng)n1時(shí),a11也滿足,,1,2,3,4,5,6,7,8,9,10,11,12,9.已知數(shù)列an的前m(m4)項(xiàng)是公差為2的等差數(shù)列,從第m1項(xiàng)起,am1,am,am1,成公比為2
14、的等比數(shù)列.若a12,則m____,an的前6項(xiàng)和S6____.,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,4,28,解析由題意,得am1a1(m2)d2m6,,所以數(shù)列an的前6項(xiàng)依次為2,0,2,4,8,16, 所以S628.,10.若Sn為數(shù)列an的前n項(xiàng)和,且2Snan1an,a14,則數(shù)列an的通項(xiàng) 公式為an________________.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,解析因?yàn)?Snan1an,a14, 所以n1時(shí),244a2,解得a22. n2時(shí),2Sn1anan1, 可得2anan1ananan1, 所以an0(舍
15、去)或an1an12. n2時(shí),an1an12,可得數(shù)列an的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別為等差數(shù)列. 所以a2k142(k1)2k2,kN*, a2k22(k1)2k,kN*.,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,12.已知數(shù)列an的前n項(xiàng)和為Sn,Snn22n,bnanan1cos(n1),數(shù)列bn的前n項(xiàng)和為Tn,若Tntn2對(duì)nN*恒成立,則實(shí)數(shù)t的取值范圍是____________.,(,5,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,
16、解析n1時(shí),a1S13. n2,anSnSn1n22n(n1)22(n1)2n1.n1時(shí)也成立, 所以an2n1. 所以bnanan1cos(n1)(2n1)(2n3)cos(n1), n為奇數(shù)時(shí),cos(n1)1, n為偶數(shù)時(shí),cos(n1)1. 因此當(dāng)n為奇數(shù)時(shí),Tn355779911(2n1)(2n3),1,2,3,4,5,6,7,8,9,10,11,12,因?yàn)門ntn2對(duì)nN*恒成立,,所以t2. 當(dāng)n為偶數(shù)時(shí),Tn355779911(2n1)(2n3) 4(59132n1)2n26n. 因?yàn)門ntn2對(duì)nN*恒成立,,所以t5. 綜上可得t5.,1,2,3,4,5,6,7,8,9,10,11,12,本課結(jié)束,