數(shù)據(jù)結(jié)構(gòu)-樹(shù)-嚴(yán)蔚敏版.ppt
《數(shù)據(jù)結(jié)構(gòu)-樹(shù)-嚴(yán)蔚敏版.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《數(shù)據(jù)結(jié)構(gòu)-樹(shù)-嚴(yán)蔚敏版.ppt(78頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第五章 樹(shù),樹(shù)是一類重要的非線性數(shù)據(jù)結(jié)構(gòu),是以分支關(guān)系定義的層次結(jié)構(gòu) 5.1 樹(shù)的定義 定義 定義:樹(shù)(tree)是n(n0)個(gè)結(jié)點(diǎn)的有限集T,其中: 有且僅有一個(gè)特定的結(jié)點(diǎn),稱為樹(shù)的根(root) 當(dāng)n1時(shí),其余結(jié)點(diǎn)可分為m(m0)個(gè)互不相交的有限集T1,T2,Tm,其中每一個(gè)集合本身又是一棵樹(shù),稱為根的子樹(shù)(subtree) 特點(diǎn): 樹(shù)中至少有一個(gè)結(jié)點(diǎn)根 樹(shù)中各子樹(shù)是互不相交的集合,,,,根,子樹(shù),基本術(shù)語(yǔ) 結(jié)點(diǎn)(node)表示樹(shù)中的元素,包括數(shù)據(jù)項(xiàng)及若干指向其子樹(shù)的分支 結(jié)點(diǎn)的度(degree)結(jié)點(diǎn)擁有的子樹(shù)數(shù) 葉子(leaf)度為0的結(jié)點(diǎn) 孩子(child)結(jié)點(diǎn)子樹(shù)的根稱為該結(jié)點(diǎn)的孩子
2、 雙親(parents)孩子結(jié)點(diǎn)的上層結(jié)點(diǎn)叫該結(jié)點(diǎn)的 兄弟(sibling)同一雙親的孩子 樹(shù)的度一棵樹(shù)中最大的結(jié)點(diǎn)度數(shù) 結(jié)點(diǎn)的層次(level)從根結(jié)點(diǎn)算起,根為第一層,它的孩子為第二層 深度(depth)樹(shù)中結(jié)點(diǎn)的最大層次數(shù) 森林(forest)m(m0)棵互不相交的樹(shù)的集合,結(jié)點(diǎn)A的度:3 結(jié)點(diǎn)B的度:2 結(jié)點(diǎn)M的度:0,葉子:K,L,F(xiàn),G,M,I,J,結(jié)點(diǎn)A的孩子:B,C,D 結(jié)點(diǎn)B的孩子:E,F(xiàn),結(jié)點(diǎn)I的雙親:D 結(jié)點(diǎn)L的雙親:E,結(jié)點(diǎn)B,C,D為兄弟 結(jié)點(diǎn)K,L為兄弟,樹(shù)的度:3,結(jié)點(diǎn)A的層次:1 結(jié)點(diǎn)M的層次:4,樹(shù)的深度:4,結(jié)點(diǎn)F,G為堂兄弟 結(jié)點(diǎn)A是結(jié)點(diǎn)F,G的祖先,5.
3、2 二叉樹(shù) 定義 定義:二叉樹(shù)是n(n0)個(gè)結(jié)點(diǎn)的有限集,它或?yàn)榭諛?shù)(n=0),或由一個(gè)根結(jié)點(diǎn)和兩棵分別稱為左子樹(shù)和右子樹(shù)的互不相交的二叉樹(shù)構(gòu)成 特點(diǎn) 每個(gè)結(jié)點(diǎn)至多有二棵子樹(shù)(即不存在度大于2的結(jié)點(diǎn)) 二叉樹(shù)的子樹(shù)有左、右之分,且其次序不能任意顛倒 基本形態(tài),二叉樹(shù)性質(zhì) 性質(zhì)1:,證明:用歸納法證明之 i=1時(shí),只有一個(gè)根結(jié)點(diǎn), 是對(duì)的 假設(shè)對(duì)所有j(1j
4、有 個(gè)結(jié)點(diǎn)(k1),證明:由性質(zhì)1,可得深度為k 的二叉樹(shù)最大結(jié)點(diǎn)數(shù)是,性質(zhì)3:對(duì)任何一棵二叉樹(shù)T,如果其終端結(jié)點(diǎn)數(shù)為n0,度為2的結(jié)點(diǎn)數(shù)為n2,則n0=n2+1,證明:n1為二叉樹(shù)T中度為1的結(jié)點(diǎn)數(shù) 因?yàn)椋憾鏄?shù)中所有結(jié)點(diǎn)的度均小于或等于2 所以:其結(jié)點(diǎn)總數(shù)n=n0+n1+n2 又二叉樹(shù)中,除根結(jié)點(diǎn)外,其余結(jié)點(diǎn)都只有一個(gè) 分支進(jìn)入 設(shè)B為分支總數(shù),則n=B+1 又:分支由度為1和度為2的結(jié)點(diǎn)射出,B=n1+2n2 于是,n=B+1=n1+2n2+1=n0+n1+n2 n0=n2+1,幾種特殊形式的二叉樹(shù) 滿二叉樹(shù) 定義:,特點(diǎn):每一層上的結(jié)點(diǎn)數(shù)都是最大
5、結(jié)點(diǎn)數(shù) 完全二叉樹(shù) 定義:深度為k,有n個(gè)結(jié)點(diǎn)的二叉樹(shù)當(dāng)且僅當(dāng)其每一個(gè)結(jié)點(diǎn)都與深度為k的滿二叉樹(shù)中編號(hào)從1至n的結(jié)點(diǎn)一一對(duì)應(yīng)時(shí),稱為 特點(diǎn) 葉子結(jié)點(diǎn)只可能在層次最大的兩層上出現(xiàn) 對(duì)任一結(jié)點(diǎn),若其右分支下子孫的最大層次為l,則其左分支下子孫的最大層次必為l 或l+1 性質(zhì) 性質(zhì)4:,,,性質(zhì)5:如果對(duì)一棵有n個(gè)結(jié)點(diǎn)的完全二叉樹(shù)的結(jié)點(diǎn)按層序編號(hào),則對(duì)任一結(jié)點(diǎn)i(1in),有: (1) 如果i=1,則結(jié)點(diǎn)i是二叉樹(shù)的根,無(wú)雙親;如果i1,則其雙親是i/2 (2) 如果2in,則結(jié)點(diǎn)i無(wú)左孩子;如果2in,則其左孩子是2i (3) 如果2i+1n,則結(jié)點(diǎn)i無(wú)右孩子;如果2i+1n,則其右孩子是2i+1
6、,5.3 樹(shù)的存儲(chǔ)結(jié)構(gòu) 樹(shù)的存儲(chǔ)結(jié)構(gòu) 雙親表示法 實(shí)現(xiàn):定義結(jié)構(gòu)數(shù)組存放樹(shù)的結(jié)點(diǎn),每個(gè)結(jié)點(diǎn)含兩個(gè)域: 數(shù)據(jù)域:存放結(jié)點(diǎn)本身信息 雙親域:指示本結(jié)點(diǎn)的雙親結(jié)點(diǎn)在數(shù)組中位置 特點(diǎn):找雙親容易,找孩子難,typedef struct node datatype data; int parent; JD; JD tM;,0,1,2,2,3,5,5,5,1,0號(hào)單元不用或 存結(jié)點(diǎn)個(gè)數(shù),如何找孩子結(jié)點(diǎn),孩子表示法 多重鏈表:每個(gè)結(jié)點(diǎn)有多個(gè)指針域,分別指向其子樹(shù)的根 結(jié)點(diǎn)同構(gòu):結(jié)點(diǎn)的指針個(gè)數(shù)相等,為樹(shù)的度D 結(jié)點(diǎn)不同構(gòu):結(jié)點(diǎn)指針個(gè)數(shù)不等,為該結(jié)點(diǎn)的度d,孩子鏈表:每個(gè)結(jié)點(diǎn)的孩子結(jié)點(diǎn)用單鏈表存儲(chǔ),再用含n
7、個(gè)元素的結(jié)構(gòu)數(shù)組指向每個(gè)孩子鏈表,孩子結(jié)點(diǎn):typedef struct node int child; //該結(jié)點(diǎn)在表頭數(shù)組中下標(biāo) struct node *next; //指向下一孩子結(jié)點(diǎn) JD; 表頭結(jié)點(diǎn):typedef struct tnode datatype data; //數(shù)據(jù)域 struct node *fc; //指向第一個(gè)孩子結(jié)點(diǎn) TD; TD tM; //t0不用,,,,,,如何找雙親結(jié)點(diǎn),帶雙親的孩子鏈表,孩子兄弟表示法(二叉樹(shù)表示法) 實(shí)現(xiàn):用二叉鏈表作樹(shù)的存儲(chǔ)結(jié)構(gòu),鏈表中每個(gè)結(jié)點(diǎn)的兩個(gè)
8、指針域分別指向其第一個(gè)孩子結(jié)點(diǎn)和下一個(gè)兄弟結(jié)點(diǎn) 特點(diǎn) 操作容易 破壞了樹(shù)的層次,typedef struct node datatype data; struct node *fch, *nsib; JD;,,,,,,,,,,,,,,,,,,,二叉樹(shù)的存儲(chǔ)結(jié)構(gòu) 順序存儲(chǔ)結(jié)構(gòu) 實(shí)現(xiàn):按滿二叉樹(shù)的結(jié)點(diǎn)層次編號(hào),依次存放二叉樹(shù)中的數(shù)據(jù)元素 特點(diǎn): 結(jié)點(diǎn)間關(guān)系蘊(yùn)含在其存儲(chǔ)位置中 浪費(fèi)空間,適于存滿二叉樹(shù)和完全二叉樹(shù),鏈?zhǔn)酱鎯?chǔ)結(jié)構(gòu) 二叉鏈表,typedef struct node datatype data; struct node *lchild, *rchild; JD;,在n個(gè)結(jié)點(diǎn)的二叉鏈
9、表中,有n+1個(gè)空指針域,,,,,,,,,,,,,,,三叉鏈表,typedef struct node datatype data; struct node *lchild, *rchild, *parent; JD;,,,,,,,,,,,,,,,,,,,,,,樹(shù)與二叉樹(shù)轉(zhuǎn)換,將樹(shù)轉(zhuǎn)換成二叉樹(shù) 加線:在兄弟之間加一連線 抹線:對(duì)每個(gè)結(jié)點(diǎn),除了其左孩子外,去除其與其余孩子之間的關(guān)系 旋轉(zhuǎn):以樹(shù)的根結(jié)點(diǎn)為軸心,將整樹(shù)順時(shí)針轉(zhuǎn)45,,,,,,樹(shù)轉(zhuǎn)換成的二叉樹(shù)其右子樹(shù)一定為空,將二叉樹(shù)轉(zhuǎn)換成樹(shù) 加線:若p結(jié)點(diǎn)是雙親結(jié)點(diǎn)的左孩子,則將p的右孩子,右孩子的右孩子,沿分支找到的所有右孩子,都與p的雙親用
10、線連起來(lái) 抹線:抹掉原二叉樹(shù)中雙親與右孩子之間的連線 調(diào)整:將結(jié)點(diǎn)按層次排列,形成樹(shù)結(jié)構(gòu),,,,,,森林轉(zhuǎn)換成二叉樹(shù) 將各棵樹(shù)分別轉(zhuǎn)換成二叉樹(shù) 將每棵樹(shù)的根結(jié)點(diǎn)用線相連 以第一棵樹(shù)根結(jié)點(diǎn)為二叉樹(shù)的根,再以根結(jié)點(diǎn)為軸心,順時(shí)針旋轉(zhuǎn),構(gòu)成二叉樹(shù)型結(jié)構(gòu),二叉樹(shù)轉(zhuǎn)換成森林 抹線:將二叉樹(shù)中根結(jié)點(diǎn)與其右孩子連線,及沿右分支搜索到的所有右孩子間連線全部抹掉,使之變成孤立的二叉樹(shù) 還原:將孤立的二叉樹(shù)還原成樹(shù),5.4 樹(shù)和二叉樹(shù)的遍歷 樹(shù)的遍歷 遍歷按一定規(guī)律走遍樹(shù)的各個(gè)頂點(diǎn),且使每一頂點(diǎn)僅被訪問(wèn)一次,即找一個(gè)完整而有規(guī)律的走法,以得到樹(shù)中所有結(jié)點(diǎn)的一個(gè)線性排列 常用方法 先根(序)遍歷:先訪問(wèn)樹(shù)的根結(jié)點(diǎn),
11、然后依次先根遍歷根的每棵子樹(shù) 后根(序)遍歷:先依次后根遍歷每棵子樹(shù),然后訪問(wèn)根結(jié)點(diǎn) 按層次遍歷:先訪問(wèn)第一層上的結(jié)點(diǎn),然后依次遍歷第二層,第n層的結(jié)點(diǎn),先序遍歷:,后序遍歷:,層次遍歷:,A,B,E,F,I,G,C,D,H,J,K,L,N,O,M,E,I,F,G,B,C,J,K,N,O,L,M,H,D,A,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,二叉樹(shù)的遍歷 方法 先序遍歷:先訪問(wèn)根結(jié)點(diǎn),然后分別先序遍歷左子樹(shù)、右子樹(shù) 中序遍歷:先中序遍歷左子樹(shù),然后訪問(wèn)根結(jié)點(diǎn),最后中序遍歷右子樹(shù) 后序遍歷:先后序遍歷左、右子樹(shù),然后訪問(wèn)根結(jié)點(diǎn) 按層次遍歷:從上到下、從左到右訪問(wèn)各結(jié)點(diǎn),
12、D L R,先序遍歷序列:A B D C,先序遍歷:,L D R,中序遍歷序列:B D A C,中序遍歷:,L R D,后序遍歷序列: D B C A,后序遍歷:,先序遍歷:,中序遍歷:,后序遍歷:,層次遍歷:,-,+,a,*,b,-,c,d,/,e,f,-,+,a,*,b,-,c,d,/,e,f,-,+,a,*,b,-,c,d,/,e,f,-,+,a,*,b,-,c,d,/,e,f,算法 遞歸算法,,Ch5_1.c,void preorder(JD *bt) if(bt!=NULL) printf(%dt,bt-data); preorder(bt-lchi
13、ld); preorder(bt-rchild); ,,返回,返回,返回,返回,A,C,B,D,返回,先序序列:A B D C,非遞歸算法,,Ch5_4.c Ch5_40.C,后序遍歷非遞歸算法,遍歷算法應(yīng)用 按先序遍歷序列建立二叉樹(shù)的二叉鏈表,已知先序序列為: A B C D E G F ,求二叉樹(shù)深度算法,,Ch5_5.c ch5_6.c,Ch5_1.c,統(tǒng)計(jì)二叉樹(shù)中葉子結(jié)點(diǎn)個(gè)數(shù)算法,5.5 二叉樹(shù)的應(yīng)用 哈夫曼樹(shù)(Huffman)帶權(quán)路徑長(zhǎng)度最短的樹(shù) 定義 路徑:從樹(shù)中一個(gè)結(jié)點(diǎn)到另一個(gè)結(jié)點(diǎn)之間的分支構(gòu)成這兩個(gè)結(jié)點(diǎn)間的 路徑長(zhǎng)度:路徑上的分支數(shù) 樹(shù)的路徑長(zhǎng)度:從樹(shù)根到每一個(gè)結(jié)點(diǎn)
14、的路徑長(zhǎng)度之和 樹(shù)的帶權(quán)路徑長(zhǎng)度:樹(shù)中所有帶權(quán)結(jié)點(diǎn)的路徑長(zhǎng)度之和,Huffman樹(shù)設(shè)有n個(gè)權(quán)值w1,w2,wn,構(gòu)造一棵有n個(gè)葉子結(jié)點(diǎn)的二叉樹(shù),每個(gè)葉子的權(quán)值為wi,則wpl最小的二叉樹(shù)叫,例 有4個(gè)結(jié)點(diǎn),權(quán)值分別為7,5,2,4,構(gòu)造有4個(gè)葉子結(jié)點(diǎn)的二叉樹(shù),WPL=7*2+5*2+2*2+4*2=36,WPL=7*3+5*3+2*1+4*2=46,WPL=7*1+5*2+2*3+4*3=35,,構(gòu)造Huffman樹(shù)的方法Huffman算法 構(gòu)造Huffman樹(shù)步驟 根據(jù)給定的n個(gè)權(quán)值w1,w2,wn,構(gòu)造n棵只有根結(jié)點(diǎn)的二叉樹(shù),令起權(quán)值為wj 在森林中選取兩棵根結(jié)點(diǎn)權(quán)值最小的樹(shù)作左右子樹(shù),構(gòu)
15、造一棵新的二叉樹(shù),置新二叉樹(shù)根結(jié)點(diǎn)權(quán)值為其左右子樹(shù)根結(jié)點(diǎn)權(quán)值之和 在森林中刪除這兩棵樹(shù),同時(shí)將新得到的二叉樹(shù)加入森林中 重復(fù)上述兩步,直到只含一棵樹(shù)為止,這棵樹(shù)即哈夫曼樹(shù),例 w=5, 29, 7, 8, 14, 23, 3, 11,Huffman算法實(shí)現(xiàn),,Ch5_8.c,一棵有n個(gè)葉子結(jié)點(diǎn)的Huffman樹(shù)有2n-1個(gè)結(jié)點(diǎn) 采用順序存儲(chǔ)結(jié)構(gòu)一維結(jié)構(gòu)數(shù)組 結(jié)點(diǎn)類型定義,typedef struct int data; int pa,lc,rc; JD;,,Ch5_8.c,Huffman樹(shù)應(yīng)用 最佳判定樹(shù),Huffman編碼:數(shù)據(jù)通信用的二進(jìn)制編碼 思想:根據(jù)字符出現(xiàn)頻率編碼,使電文總長(zhǎng)最短
16、編碼:根據(jù)字符出現(xiàn)頻率構(gòu)造Huffman樹(shù),然后將樹(shù)中結(jié)點(diǎn)引向其左孩子的分支標(biāo)“0”,引向其右孩子的分支標(biāo)“1”;每個(gè)字符的編碼即為從根到每個(gè)葉子的路徑上得到的0、1序列,例 要傳輸?shù)淖址?D=C,A,S,T, ; 字符出現(xiàn)頻率 w=2,4,2,3,3,T : 00 ; : 01 A : 10 C : 110 S : 111,譯碼:從Huffman樹(shù)根開(kāi)始,從待譯碼電文中逐位取碼。若編碼是“0”,則向左走;若編碼是“1”,則向右走,一旦到達(dá)葉子結(jié)點(diǎn),則譯出一個(gè)字符;再重新從根出發(fā),直到電文結(jié)束,例 電文是CAS;CAT;SAT;AT 其編碼 “110101110111010000111
17、11000011000” 電文為“1101000” 譯文只能是“CAT”,線索二叉樹(shù) 定義: 前驅(qū)與后繼:在二叉樹(shù)的先序、中序或后序遍歷序列中兩個(gè)相鄰的結(jié)點(diǎn)互稱為 線索:指向前驅(qū)或后繼結(jié)點(diǎn)的指針?lè)Q為 線索二叉樹(shù):加上線索的二叉鏈表表示的二叉樹(shù)叫 線索化:對(duì)二叉樹(shù)按某種遍歷次序使其變?yōu)榫€索二叉樹(shù)的過(guò)程叫 實(shí)現(xiàn) 在有n個(gè)結(jié)點(diǎn)的二叉鏈表中必定有n+1個(gè)空鏈域 在線索二叉樹(shù)的結(jié)點(diǎn)中增加兩個(gè)標(biāo)志域 lt :若 lt =0, lc 域指向左孩子;若 lt=1, lc域指向其前驅(qū) rt :若 rt =0, rc 域指向右孩子;若 rt=1, rc域指向其后繼 結(jié)點(diǎn)定義:,typedef struct n
18、ode int data; int lt, rt; struct node *lc, *rc; JD;,,,,,,,,,,0,0,0,0,1,1,1,1,,1,1,,,,,0,0,0,0,1,1,1,1,,1,1,,,,,,,,,,0,0,0,0,1,1,1,1,1,1,,,,,,,頭結(jié)點(diǎn): lt=0, lc指向根結(jié)點(diǎn) rt=1, rc指向遍歷序列中最后一個(gè)結(jié)點(diǎn) 遍歷序列中第一個(gè)結(jié)點(diǎn)的lc域和最后 一個(gè)結(jié)點(diǎn)的rc域都指向頭結(jié)點(diǎn),算法 按中序線索化二叉樹(shù),,Ch5_20.c,,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=(JD *)mall
19、oc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr;
20、 return(t); ,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=(JD *)malloc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-r
21、c==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr; return(t); ,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=(JD *)malloc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do while(p!=NULL) si+
22、+=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr; return(t); ,算法 按中序線索化二叉樹(shù),Ch5_20.c,,i,,輸出:B,,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=(JD *)malloc(sizeof(
23、JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr; return(t)
24、; ,1,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,輸出:B,,i,P-C,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=(JD *)malloc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(
25、pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr; return(t); ,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,i,P-C,輸出:B,,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=(JD *)malloc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do whi
26、le(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr; return(t); ,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,i,輸出: B C,,,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=
27、(JD *)malloc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1;
28、 t-rc=pr; return(t); ,1,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,i,輸出: B C,,,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=(JD *)malloc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p
29、-lt=1; p-lc=pr; if(pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr; return(t); ,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,i,輸出: B C A,,,,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=(JD *)malloc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=
30、bt; pr=t; p=bt; do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr; return(t); ,1,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,i,輸出: B C A,,,,P-D,JD *zxxsh(JD *b
31、t) JD *p,*pr,*sM,*t; int i=0; t=(JD *)malloc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(
32、i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr; return(t); ,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,i,輸出: B C A,,,,P-D,P-E,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=(JD *)malloc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i;
33、 printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr; return(t); ,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,i,輸出: B C A,,,,P-D,P-E,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=(JD *)malloc(sizeof(JD)); t-lt=0;
34、t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr; return(t); ,算法 按中序線索化二叉
35、樹(shù),,Ch5_20.c,,i,輸出: B C A E,,,,P-D,,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=(JD *)malloc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-rc=
36、=NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr; return(t); ,1,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,i,輸出: B C A E,,,,P-D,,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=(JD *)malloc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt;
37、do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr; return(t); ,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,i,輸出: B C A E D,,,,,,JD *zxxsh(JD *bt) JD *p,*pr,*sM,
38、*t; int i=0; t=(JD *)malloc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr
39、-rc=t; pr-rt=1; t-rc=pr; return(t); ,1,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,i,輸出: B C A E D,,,,,,,,JD *zxxsh(JD *bt) JD *p,*pr,*sM,*t; int i=0; t=(JD *)malloc(sizeof(JD)); t-lt=0; t-rt=1; t-rc=t; if(bt==NULL) t-lc=t; else t-lc=bt; pr=t; p=bt; do while(p!=NULL) si++=p; p=p-lc; if(i0) p=s--i; printf(%c ,p-
40、data); if(p-lc==NULL) p-lt=1; p-lc=pr; if(pr-rc==NULL) pr-rt=1; pr-rc=p; pr=p; p=p-rc; while(i0||p!=NULL); pr-rc=t; pr-rt=1; t-rc=pr; return(t); ,1,算法 按中序線索化二叉樹(shù),,Ch5_20.c,,輸出: B C A E D,算法 按中序線索化二叉樹(shù) 遍歷中序線索二叉樹(shù),,Ch5_20.c,在中序線索二叉樹(shù)中找結(jié)點(diǎn)后繼的方法: (1)若rt=1, 則rc域直接指向其后繼 (2)若rt=0, 則結(jié)點(diǎn)的后繼應(yīng)是其右子樹(shù)的左鏈尾(lt
41、=1)的結(jié)點(diǎn),在中序線索二叉樹(shù)中找結(jié)點(diǎn)前驅(qū)的方法: (1)若lt=1, 則lc域直接指向其前驅(qū) (2)若lt=0, 則結(jié)點(diǎn)的前驅(qū)應(yīng)是其左子樹(shù)的右鏈尾(rt=1)的結(jié)點(diǎn),二叉排序樹(shù) 定義:二叉排序樹(shù)或是一棵空樹(shù),或是具有下列性質(zhì)的二叉樹(shù): 若它的左子樹(shù)不空,則左子樹(shù)上所有結(jié)點(diǎn)的值均小于它的根結(jié)點(diǎn)的值 若它的右子樹(shù)不空,則右子樹(shù)上所有結(jié)點(diǎn)的值均大于或等于它的根結(jié)點(diǎn)的值 它的左、右子樹(shù)也分別為二叉排序樹(shù) 二叉排序樹(shù)的插入 插入原則:若二叉排序樹(shù)為空,則插入結(jié)點(diǎn)應(yīng)為新的根結(jié)點(diǎn);否則,繼續(xù)在其左、右子樹(shù)上查找,直至某個(gè)葉子結(jié)點(diǎn)的左子樹(shù)或右子樹(shù)為空為止,則插入結(jié)點(diǎn)應(yīng)為該葉子結(jié)點(diǎn)的左孩子或右孩子 二叉排序樹(shù)
42、生成:從空樹(shù)出發(fā),經(jīng)過(guò)一系列的查找、插入操作之后,可生成一棵二叉排序樹(shù),插入算法,例 10, 18, 3, 8, 12, 2, 7, 3,10,中序遍歷二叉排序樹(shù)可得到一個(gè)關(guān)鍵字的有序序列,,Ch5_9.c,二叉排序樹(shù)的刪除 要?jiǎng)h除二叉排序樹(shù)中的p結(jié)點(diǎn),分三種情況: p為葉子結(jié)點(diǎn),只需修改p雙親f的指針f-lchild=NULL f-rchild=NULL p只有左子樹(shù)或右子樹(shù) p只有左子樹(shù),用p的左孩子代替p (1)(2) p只有右子樹(shù),用p的右孩子代替p (3)(4) p左、右子樹(shù)均非空 沿p左子樹(shù)的根C的右子樹(shù)分支找到S,S的右子樹(shù)為空,將S的左子樹(shù)成為S的雙親Q的右子樹(shù),用S取代p (5) 若C無(wú)右子樹(shù),用C取代p (6),,,,,,,,刪除算法,,Ch5_10.c,
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中語(yǔ)文作文素材:30篇文學(xué)名著開(kāi)場(chǎng)白
- 初中語(yǔ)文答題技巧:現(xiàn)代文閱讀-說(shuō)明文閱讀知識(shí)點(diǎn)總結(jié)
- 初中語(yǔ)文作文十大??荚掝}+素材
- 初中語(yǔ)文作文素材:描寫冬天的好詞、好句、好段總結(jié)
- 初中語(yǔ)文必考名著總結(jié)
- 初中語(yǔ)文作文常見(jiàn)主題總結(jié)
- 初中語(yǔ)文考試常考名著總結(jié)
- 初中語(yǔ)文必考50篇古詩(shī)文默寫
- 初中語(yǔ)文易錯(cuò)易混詞總結(jié)
- 初中語(yǔ)文228條文學(xué)常識(shí)
- 初中語(yǔ)文作文素材:30組可以用古詩(shī)詞當(dāng)作文標(biāo)題
- 初中語(yǔ)文古代文化常識(shí)七大類別總結(jié)
- 初中語(yǔ)文作文素材:100個(gè)文藝韻味小短句
- 初中語(yǔ)文閱讀理解33套答題公式
- 初中語(yǔ)文228條文學(xué)常識(shí)總結(jié)