全國卷高考數(shù)學(xué)圓錐曲線大題集大全.doc
高考二輪復(fù)習(xí)專項(xiàng):圓錐曲線大題集
1. 如圖,直線l1與l2是同一平面內(nèi)兩條互相垂直的直線,交點(diǎn)是A,點(diǎn)B、D在直線l1上(B、D 位于點(diǎn)A右側(cè)),且|AB|=4,|AD|=1,M是該平面上的一個動點(diǎn),M在l1上的射影點(diǎn)是N,且|BN|=2|DM|.
(Ⅰ) 建立適當(dāng)?shù)淖鴺?biāo)系,求動點(diǎn)M的軌跡C的方程.
(Ⅱ)過點(diǎn)D且不與l1、l2垂直的直線l交(Ⅰ)中的軌跡C于E、F兩點(diǎn);另外平面上的點(diǎn)G、H滿足:
A
D
M
B
N
l2
l1
???
求點(diǎn)G的橫坐標(biāo)的取值范圍.
2. 設(shè)橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率,已知點(diǎn)到這個橢圓上的點(diǎn)的最遠(yuǎn)距離是4,求這個橢圓的方程.
3. 已知橢圓的一條準(zhǔn)線方程是其左、右頂點(diǎn)分別
是A、B;雙曲線的一條漸近線方程為3x-5y=0.
(Ⅰ)求橢圓C1的方程及雙曲線C2的離心率;
(Ⅱ)在第一象限內(nèi)取雙曲線C2上一點(diǎn)P,連結(jié)AP交橢圓C1于點(diǎn)M,連結(jié)PB并延長交橢圓C1于點(diǎn)N,若. 求證:
4. 橢圓的中心在坐標(biāo)原點(diǎn)O,右焦點(diǎn)F(c,0)到相應(yīng)準(zhǔn)線的距離為1,傾斜角為45°的直線交橢圓于A,B兩點(diǎn).設(shè)AB中點(diǎn)為M,直線AB與OM的夾角為a.
(1)用半焦距c表示橢圓的方程及tan;
(2)若2<tan<3,求橢圓率心率e的取值范圍.
5. 已知橢圓(a>b>0)的離心率,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
(1)求橢圓的方程
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C D兩點(diǎn) 問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請說明理由
6. 在直角坐標(biāo)平面中,的兩個頂點(diǎn)的坐標(biāo)分別為,,平面內(nèi)兩點(diǎn)同時滿足下列條件:
①;②;③∥
(1)求的頂點(diǎn)的軌跡方程;
(2)過點(diǎn)的直線與(1)中軌跡交于兩點(diǎn),求的取值范圍
7. 設(shè),為直角坐標(biāo)平面內(nèi)x軸.y軸正方向上的單位向量,若,且
(Ⅰ)求動點(diǎn)M(x,y)的軌跡C的方程;
(Ⅱ)設(shè)曲線C上兩點(diǎn)A.B,滿足(1)直線AB過點(diǎn)(0,3),(2)若,則OAPB為矩形,試求AB方程.
8. 已知拋物線C:的焦點(diǎn)為原點(diǎn),C的準(zhǔn)線與直線
的交點(diǎn)M在x軸上,與C交于不同的兩點(diǎn)A、B,線段AB的垂直平分線交x軸于點(diǎn)N(p,0).
(Ⅰ)求拋物線C的方程;
(Ⅱ)求實(shí)數(shù)p的取值范圍;
(Ⅲ)若C的焦點(diǎn)和準(zhǔn)線為橢圓Q的一個焦點(diǎn)和一條準(zhǔn)線,試求Q的短軸的端點(diǎn)的軌跡方程.
9. 如圖,橢圓的中心在原點(diǎn),長軸AA1在x軸上.以A、A1為焦點(diǎn)的雙曲線交橢圓于C、D、D1、C1四點(diǎn),且|CD|=|AA1|.橢圓的一條弦AC交雙曲線于E,設(shè),當(dāng)時,求雙曲線的離心率e的取值范圍.
10. 已知三角形ABC的三個頂點(diǎn)均在橢圓上,且點(diǎn)A是橢圓短軸的一個端點(diǎn)(點(diǎn)A在y軸正半軸上).
若三角形ABC的重心是橢圓的右焦點(diǎn),試求直線BC的方程;
若角A為,AD垂直BC于D,試求點(diǎn)D的軌跡方程.
11. 如圖,過拋物線的對稱軸上任一點(diǎn)作直線與拋物線交于兩點(diǎn),點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn).
(1) 設(shè)點(diǎn)分有向線段所成的比為,證明:;
(2) 設(shè)直線的方程是,過兩點(diǎn)的圓與拋物線在點(diǎn)處有共同的切線,求圓的方程.
12. 已知動點(diǎn)P(p,-1),Q(p,),過Q作斜率為的直線l,P Q中點(diǎn)M的軌跡為曲線C.
(1)證明:l經(jīng)過一個定點(diǎn)而且與曲線C一定有兩個公共點(diǎn);
(2)若(1)中的其中一個公共點(diǎn)為A,證明:AP是曲線C的切線;
(3)設(shè)直線AP的傾斜角為,AP與l的夾角為,證明:或是定值.
13. 在平面直角坐標(biāo)系內(nèi)有兩個定點(diǎn)和動點(diǎn)P,坐標(biāo)分別為 、,動點(diǎn)滿足,動點(diǎn)的軌跡為曲線,曲線關(guān)于直線的對稱曲線為曲線,直線與曲線交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),△ABO的面積為,
(1)求曲線C的方程;(2)求的值。
14. 已知雙曲線的左右兩個焦點(diǎn)分別為,點(diǎn)P在雙曲線右支上.
(Ⅰ)若當(dāng)點(diǎn)P的坐標(biāo)為時,,求雙曲線的方程;
(Ⅱ)若,求雙曲線離心率的最值,并寫出此時雙曲線的漸進(jìn)線方程.
15. 若F、F為雙曲線的左右焦點(diǎn),O為坐標(biāo)原點(diǎn),P在雙曲線的左支上,點(diǎn)M在右準(zhǔn)線上,且滿足;.
(1)求該雙曲線的離心率;
(2)若該雙曲線過N(2,),求雙曲線的方程;
(3)若過N(2,)的雙曲線的虛軸端點(diǎn)分別為B、B(B在y軸正半軸上),點(diǎn)A、B在雙曲線上,且時,直線AB的方程.
16. 以O(shè)為原點(diǎn),所在直線為軸,建立如 所示的坐標(biāo)系。設(shè),點(diǎn)F的坐標(biāo)為,,點(diǎn)G的坐標(biāo)為。
(1)求關(guān)于的函數(shù)的表達(dá)式,判斷函數(shù)的單調(diào)性,并證明你的判斷;
(2)設(shè)ΔOFG的面積,若以O(shè)為中心,F(xiàn)為焦點(diǎn)的橢圓經(jīng)過點(diǎn)G,求當(dāng)取最小值時橢圓的方程;
(3)在(2)的條件下,若點(diǎn)P的坐標(biāo)為,C、D是橢圓上的兩點(diǎn),且,求實(shí)數(shù)的取值范圍。
17. 已知點(diǎn)C為圓的圓心,點(diǎn)A(1,0),P是圓上的動點(diǎn),點(diǎn)Q在圓的半徑CP上,且
(Ⅰ)當(dāng)點(diǎn)P在圓上運(yùn)動時,求點(diǎn)Q的軌跡方程;
(Ⅱ)若直線與(Ⅰ)中所求點(diǎn)Q
的軌跡交于不同兩點(diǎn)F,H,O是坐標(biāo)原點(diǎn),
且,求△FOH的面積的取值范圍。
18. 如圖所示,O是線段AB的中點(diǎn),|AB|=2c,以點(diǎn)A為圓心,2a為半徑作一圓,其中。
A
O
B
(1)若圓A外的動點(diǎn)P到B的距離等于它到圓周的最短距離,建立適當(dāng)坐標(biāo)系,求動點(diǎn)P的軌跡方程,并說明軌跡是何種曲線;
(2)經(jīng)過點(diǎn)O的直線l與直線AB成60°角,當(dāng)c=2,a=1時,動點(diǎn)P的軌跡記為E,設(shè)過點(diǎn)B的直線m交曲線E于M、N兩點(diǎn),且點(diǎn)M在直線AB的上方,求點(diǎn)M到直線l的距離d的取值范圍。
19. 設(shè)O為坐標(biāo)原點(diǎn),曲線上有兩點(diǎn)P、Q滿足關(guān)于直線對稱,又以PQ為直徑的圓過O點(diǎn).
(1)求的值; (2)求直線PQ的方程.
20. 在平面直角坐標(biāo)系中,若,且,
(1)求動點(diǎn)的軌跡的方程;
(2)已知定點(diǎn),若斜率為的直線過點(diǎn)并與軌跡交于不同的兩點(diǎn),且對于軌跡上任意一點(diǎn),都存在,使得成立,試求出滿足條件的實(shí)數(shù)的值。
21. 已知雙曲線(a>0,b>0)的右準(zhǔn)線一條漸近線交于兩點(diǎn)P、Q,F(xiàn)是雙曲線的右焦點(diǎn)。
(I)求證:PF⊥;
(II)若△PQF為等邊三角形,且直線y=x+b交雙曲線于A,B兩點(diǎn),且,求雙曲線的方程;
(III)延長FP交雙曲線左準(zhǔn)線和左支分別為點(diǎn)M、N,若M為PN的中點(diǎn),求雙曲線的離心率e。
22. 已知又曲線 在左右頂點(diǎn)分別是A,B,點(diǎn)P是其右準(zhǔn)線上的一點(diǎn),若點(diǎn)A關(guān)于點(diǎn)P的對稱點(diǎn)是M,點(diǎn)P關(guān)于點(diǎn)B的對稱點(diǎn)是N,且M、N都在此雙曲線上。
(I)求此雙曲線的方程;
(II)求直線MN的傾斜角。
23. 如圖,在直角坐標(biāo)系中,點(diǎn)A(-1,0),B(1,0),P(x,y)()。設(shè)與x軸正方向的夾角分別為α、β、γ,若。
(I)求點(diǎn)P的軌跡G的方程;
(II)設(shè)過點(diǎn)C(0,-1)的直線與軌跡G交于不同兩點(diǎn)M、N。問在x軸上是否存在一點(diǎn),使△MNE為正三角形。若存在求出值;若不存在說明理由。
24. 設(shè)橢圓過點(diǎn),且焦點(diǎn)為。
(1)求橢圓的方程;
(2)當(dāng)過點(diǎn)的動直線與橢圓相交與兩不同點(diǎn)A、B時,在線段上取點(diǎn),
滿足,證明:點(diǎn)總在某定直線上。
25. 平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0)、B(0,-2),點(diǎn)C滿足、
(1)求點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)C的軌跡與雙曲線交于兩點(diǎn)M、N,且以MN為直徑的圓過原點(diǎn),求證:.
26. 設(shè),、分別為軸、軸上的點(diǎn),且,動點(diǎn)滿足:.
(1)求動點(diǎn)的軌跡的方程;
(2)過定點(diǎn)任意作一條直線與曲線交與不同的兩點(diǎn)、,問在軸上是否存在一定點(diǎn),使得直線、的傾斜角互補(bǔ)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
27. 如圖,直角梯形ABCD中,∠,AD∥BC,AB=2,AD=,BC=
橢圓F以A、B為焦點(diǎn),且經(jīng)過點(diǎn)D,
(Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓F的方程;
C
B
D
A
(Ⅱ)是否存在直線與兩點(diǎn),且線段,若存在,求直線的方程;若不存在,說明理由.
28. 如圖所示,B(– c,0),C(c,0),AH⊥BC,垂足為H,且.
(1)若= 0,求以B、C為焦點(diǎn)并且經(jīng)過點(diǎn)A的橢圓的離心率;
(2)D分有向線段的比為,A、D同在以B、C為焦點(diǎn)的橢圓上,
當(dāng) ―5≤≤ 時,求橢圓的離心率e的取值范圍.
29. 在直角坐標(biāo)平面中,的兩個頂點(diǎn)的坐標(biāo)分別為,,平面內(nèi)兩點(diǎn)同時滿足下列條件:
①;②;③∥
(1)求的頂點(diǎn)的軌跡方程;
(2)過點(diǎn)的直線與(1)中軌跡交于兩點(diǎn),求的取值范圍
答案:
1.解:(Ⅰ) 以A點(diǎn)為坐標(biāo)原點(diǎn),l1為x軸,建立如圖所示的坐標(biāo)系,則D(1,0),B(4,0),設(shè)M(x,y),
則N(x,0).
∵|BN|=2|DM|,
∴|4-x|=2,
整理得3x2+4y2=12,
∴動點(diǎn)M的軌跡
方程為.
(Ⅱ)∵
∴A、D、G三點(diǎn)共線,即點(diǎn)G在x軸上;又∵∴H點(diǎn)為線段EF的中點(diǎn);又∵∴點(diǎn)G是線段EF的垂直平分線GH與x軸的交點(diǎn)。
設(shè)l:y=k(x-1)(k≠0),代入3x2+4y2=12得
(3+4k2)x2-8k2x+4k2-12=0,由于l過點(diǎn)D(1,0)是橢圓的焦點(diǎn),
∴l(xiāng)與橢圓必有兩個交點(diǎn),
設(shè)E(x1,y1),F(xiàn)(x2,y2),EF的中點(diǎn)H的坐標(biāo)為(x0,y0),
∴x1+x2= ,x1x2= ,
x0= = ,y0=k(x0-1)= ,
∴線段EF的垂直平分線為
y- y0 =- (x-x0),令y=0得,
點(diǎn)G的橫坐標(biāo)xG = ky0+x0 = + =
= -,
∵k≠0,∴k2>0,∴3+4k2>3,0<<,∴-<-<0,
∴xG= -(0,)
∴點(diǎn)G的橫坐標(biāo)的取值范圍為(0,).
2.解:∵,∴
由得
∴設(shè)橢圓的方程為()
即()
設(shè)是橢圓上任意一點(diǎn),則
()
若即,則當(dāng)時,
由已知有,得;
若即,則當(dāng)時,
由已知有,得(舍去).
綜上所述,,.
所以,橢圓的方程為.
3.解:(I)由已知
∴橢圓的方程為,雙曲線的方程.
又 ∴雙曲線的離心率
(Ⅱ)由(Ⅰ)A(-5,0),B(5,0) 設(shè)M得M為AP的中點(diǎn)
∴P點(diǎn)坐標(biāo)為 將M、p坐標(biāo)代入c1、c2方程得
消去y0得 解之得
由此可得P(10,
當(dāng)P為(10, 時 PB: 即
代入
MN⊥x軸 即
4.解:(1)由題意可知所以橢圓方程為
設(shè),將其代入橢圓方程相減,將
代入 可化得
(2)若2<tan<3,則
5.解:(1)直線AB方程為:bx-ay-ab=0
依題意 解得
∴ 橢圓方程為
(2)假若存在這樣的k值,由得
∴ ?、?
設(shè), ,,則 ?、?
而
要使以CD為直徑的圓過點(diǎn)E(-1,0),當(dāng)且僅當(dāng)CE⊥DE時,則,即
∴ ?、?
將②式代入③整理解得 經(jīng)驗(yàn)證,,使①成立
綜上可知,存在,使得以CD為直徑的圓過點(diǎn)E
6.解:(1)設(shè)
, 點(diǎn)在線段的中垂線上
由已知;又∥,
又
,頂點(diǎn)的軌跡方程為 .
(2)設(shè)直線方程為:,,
由 消去得: ①
,
而
由方程①知 ><
,<<, .
7.解:解:令
則 即
即
又∵ ∴
所求軌跡方程為
(Ⅱ)解:由條件(2)可知OAB不共線,故直線AB的斜率存在
設(shè)AB方程為
則
∵OAPB為矩形,∴OA⊥OB
∴ 得
所求直線方程為…
8.解:(I)由題意,拋物線頂點(diǎn)為(-n,0),又∵焦點(diǎn)為原點(diǎn)∴m>0
準(zhǔn)線方程且有m=4n.
∵準(zhǔn)線與直線交點(diǎn)在x軸上,交點(diǎn)為
又與x軸交于(-2,0),∴m=4,n=1
∴拋物線方程為y2=4(x+1)
(II)由
∴-1<k<1且k≠0
∴AB的中垂線方程為
得
∴p∈(2,+∞)
(III)∵拋物線焦點(diǎn)F(0,0),準(zhǔn)線x=-2
∴x=-2是Q的左準(zhǔn)線
設(shè)Q的中心為O′(x,0),則短軸端點(diǎn)為(±x,y)
若F為左焦點(diǎn),則c=x>0,b=|y|
∴a2=b2+c2=x2+y2
依左準(zhǔn)線方程有 即y2=2x (x>0)
若F為右焦點(diǎn),則x<0,故c=-x,b=|y|
∴a2=b2+c2=x2+y2 依左準(zhǔn)線方程有
即 化簡得2x2+2x+y2=0
即 (x<0,y≠0)
9.解:建立如原題圖所示的坐標(biāo)系,則AB的方程為由于點(diǎn)P在AB上,可設(shè)P點(diǎn)的坐標(biāo)為 則長方形面積
化簡得易知,當(dāng)
(21)解:設(shè)A(-c,0),A1(c,0),則(其中c為雙曲線的半焦距,h為C、D到x軸的距離)即E點(diǎn)坐標(biāo)為
設(shè)雙曲線的方程為,將代入方程,得①
將代入①式,整理得
消去
由于
10.解:1)設(shè)B(,),C(,),BC中點(diǎn)為(),F(2,0)
則有
兩式作差有
(1)
F(2,0)為三角形重心,所以由,得
由得,
代入(1)得
直線BC的方程為
2)由AB⊥AC得 (2)
設(shè)直線BC方程為,得
,
代入(2)式得
,解得或
直線過定點(diǎn)(0,,設(shè)D(x,y)
則
即
所以所求點(diǎn)D的軌跡方程是。
11.解:(1) 依題意,可設(shè)直線的方程為 代入拋物線方程得
①
設(shè)兩點(diǎn)的坐標(biāo)分別是 、、是方程①的兩根.
所以
由點(diǎn)分有向線段所成的比為,得
又點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,故點(diǎn)的坐標(biāo)是,從而.
所以
(2) 由 得點(diǎn)的坐標(biāo)分別是(6,9)、(-4,4),
由 得
所以拋物線 在點(diǎn)處切線的斜率為,
設(shè)圓的圓心為, 方程是
則解得
則圓的方程是 (或)
12.解:(1)直線l的方程是:,即,經(jīng)過定點(diǎn)(0,1);
又M(p,),設(shè)x= p,y=,消去p,得到的軌跡方程為:.
由有,其中△=4p2+16,所以l經(jīng)過一個定點(diǎn)而且與曲線C一定有兩個公共點(diǎn).
(2)由,設(shè)A(),
則=,
又函數(shù)的導(dǎo)函數(shù)為,故A處的切線的斜率也是,從而AP是曲線C的切線.對于另一個解同樣可證.
(3)當(dāng)A()時,tan=,
tan==,
tantan=1,
又易知與都是銳角,所以=90°;
當(dāng)A()時,tan=,
tan==, tantan=-1,
又易知是鈍角,都是銳角,所以=90°.總之或是定值.
13.解:(1)設(shè)P點(diǎn)坐標(biāo)為,則
,化簡得,
所以曲線C的方程為;
(2)曲線C是以為圓心,為半徑的圓 ,曲線也應(yīng)該是一個半徑為的圓,點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo)為,所以曲線的方程為
,
該圓的圓心到直線的距離為
,
,或,
所以,,或。
14.解:(Ⅰ)(法一)由題意知,, ,
, (1分)
解得 . 由雙曲線定義得:
,
所求雙曲線的方程為:
(法二) 因,由斜率之積為,可得解.
(Ⅱ)設(shè),
(法一)設(shè)P的坐標(biāo)為, 由焦半徑公式得,,,
的最大值為2,無最小值. 此時,
此時雙曲線的漸進(jìn)線方程為
(法二)設(shè),.
(1)當(dāng)時, ,
此時 .
(2)當(dāng),由余弦定理得:
,
,,綜上,的最大值為2,但無最小值. (以下法一)
15.解:(1)由知四邊形PF為平行四邊形,∵
(∴OP平分∠,∴平行四邊形PFOM 為菱形,又∵
∴.
(2)∵∴∴雙曲線的方程為∴所求雙曲線的方程為
(3)依題意得∴、B、B共線,不妨設(shè)直線AB為:
y=kx-3,A(x則有,得,因?yàn)榈臐u進(jìn)線為,當(dāng)時,AB與雙曲線只有一個交點(diǎn),不合題意,當(dāng)∴,
又,∴∴所求的直線AB的方程為.
16.解:(1)由題意知,則
函數(shù)在是單調(diào)遞增函數(shù)。(證明略)(4分)
(2)由,
點(diǎn)G,
因在上是增函數(shù),當(dāng)時,取最小值,此時,
依題意橢圓的中心在原點(diǎn),一個焦點(diǎn)F(3,0),設(shè)橢圓方程為,由G點(diǎn)坐標(biāo)代入與焦點(diǎn)F(3,0),可得橢圓方程為: (9分)
(3)設(shè),則,
由,,
因點(diǎn)C、D在橢圓上,代入橢圓方程得,,消去,
得,又,
則實(shí)數(shù)的取值范圍為。
17.解:(1)由題意MQ是線段AP的垂直平分線,于是
|CP|=|QC|+|QP|=|QC|+|QA|=2>|CA|=2,于是點(diǎn) Q的軌跡是以點(diǎn)C,A為焦點(diǎn),半焦距c=1,長半軸a=的橢圓,短半軸
點(diǎn)Q的軌跡E方程是:.
(2)設(shè)F(x1,y1)H(x2,y2),則由,
消去y得
又點(diǎn)O到直線FH的距離d=1,
18.解:(1)以直線AB為x軸,線段AB的垂直平分線為y軸建立直角坐標(biāo)系,則A(-c,0),B(c,0)
依題意:
∴點(diǎn)P的軌跡為以A、B為焦點(diǎn),實(shí)半軸為a,虛半軸為的雙曲線右支
∴軌跡方程為:。
(2)法一:設(shè)M(,),N(,)
依題意知曲線E的方程為
,l的方程為
設(shè)直線m的方程為
由方程組,消去y得
①
∴
∵直線與雙曲線右支交于不同的兩點(diǎn)
∴及,從而
由①得
解得且
當(dāng)x=2時,直線m垂直于x軸,符合條件,∴
又設(shè)M到l的距離為d,則
∵
∴
設(shè),
由于函數(shù)與均為區(qū)間的增函數(shù)
∴在單調(diào)遞減
∴的最大值=
又∵
而M的橫坐標(biāo),∴
法二:為一條漸近線
①m位于時,m在無窮遠(yuǎn),此時
②m位于時,,d較大
由
點(diǎn)M
∴
故
19.解:(1) 曲線表示以為圓心,以3為半徑的圓, 圓上兩點(diǎn)P、Q滿足關(guān)于直線對稱,則圓心在直線上,代入解得
(2)直線PQ與直線垂直,所以設(shè)PQ方程為
,.
將直線與圓的方程聯(lián)立得
由解得.
.
又以PQ為直徑的圓過O點(diǎn)
解得
故所求直線方程為
20.解:(1)∵,且,
∴動點(diǎn)到兩個定點(diǎn)的距離的和為4,
∴軌跡是以為焦點(diǎn)的橢圓,方程為
(2)設(shè),直線的方程為,代入,
消去得 ,
由得 , 且,
∴
設(shè)點(diǎn),由可得
∵點(diǎn)在上,
∴
∴,
又因?yàn)榈娜我庑裕啵?
∴,又, 得 ,
代入檢驗(yàn),滿足條件,故的值是。
21.解:(1) 不妨設(shè).
, F.(c,0)
設(shè)
k2= ∴k1k2=-1.
即PF⊥.
(2)由題
. x2-bx-b2=0,
∴a=1, ∴雙曲線方程為
(3) y=- M(-
∴N(-).
又N在雙曲線上?!?
∴e=
22.解:(I)點(diǎn)A、B的坐標(biāo)為A(-3,0),B(3,0),設(shè)點(diǎn)P、M、N的坐標(biāo)依次為
則有
② 4-①得 ,解得c=5
故所求方程是
(II)由②得,
所以,M、N的坐標(biāo)為
所以MN的傾斜角是
23.解:(I)由已知,當(dāng)時,
當(dāng)時,,也滿足方程<1>
∴所求軌跡G方程為
(II)假設(shè)存在點(diǎn),使為正△
設(shè)直線方程:代入
得:
∴MN中點(diǎn)
在正△EMN中,
與矛盾
∴不存在這樣的點(diǎn)使△MNE為正△
24.解:(1)由題意: ,解得,
所求橢圓方程為
(2)解:設(shè)過P的直線方程為:,
設(shè),,
則
,
∵,∴,即,
化簡得:,
∴,
去分母展開得:
化簡得:,解得:
又∵Q在直線上,
∴,∴
即,
∴Q恒在直線上。
25.解:(1)解:設(shè)
即點(diǎn)C的軌跡方程為x+y=1
26.解:(1)設(shè),則、,
又,,即.
(2)設(shè)直線的方程為:,、
假設(shè)存在點(diǎn)滿足題意,則,
,即,,
,又
,
由于,則
對不同的值恒成立,即對不同的值恒成立,
則,即,故存在點(diǎn)符合題意.
27.解:(Ⅰ)以AB中點(diǎn)為原點(diǎn)O,AB所在直線為x軸,建立直角坐標(biāo)系,如圖
則A(-1,0) B(1,0) D(-1,)
設(shè)橢圓F的方程為
得
得
所求橢圓F方程
(Ⅱ)解:若存在這樣的直線l,依題意,l不垂直x軸
設(shè) l方程
代入
設(shè)、 有
得
又內(nèi)部
故所求直線l方程
(Ⅱ)解法2:若存在這樣的直線l,設(shè),
有
兩式相減得
有
得 即l斜率為
又,故所求直線l方程
28.解:(1)因?yàn)椋訦 ,又因?yàn)锳H⊥BC,所以設(shè)A,由 得 即 3分
所以|AB| = ,|AC | =
橢圓長軸2a = |AB| + |AC| = (+ 1)c, 所以,.
(2)設(shè)D (x1,y1),因?yàn)镈分有向線段的比為,所以,,
設(shè)橢圓方程為= 1 (a > b > 0),將A、D點(diǎn)坐標(biāo)代入橢圓方程得 .①
…………………………….. ②
由①得,代入②并整理得,
因?yàn)?– 5≤≤,所以,又0 < e < 1,所以≤e≤.
29.解:(1)設(shè)
, 點(diǎn)在線段的中垂線上
由已知;又∥,
又
,頂點(diǎn)的軌跡方程為 .
(2)設(shè)直線方程為:,,
由 消去得: ①
,
而
由方程①知 ><
,<<, .