九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類 > PPT文檔下載  

微積分學(xué)PPt標(biāo)準(zhǔn)課件18-第18講函數(shù)的微分

  • 資源ID:15789001       資源大?。?span id="24d9guoke414" class="font-tahoma">464.60KB        全文頁(yè)數(shù):32頁(yè)
  • 資源格式: PPT        下載積分:9.9積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

微積分學(xué)PPt標(biāo)準(zhǔn)課件18-第18講函數(shù)的微分

一元微積分學(xué),大 學(xué) 數(shù) 學(xué)(一),第十八講 函數(shù)的微分,,腳本編寫、教案制作:劉楚中 彭亞新 鄧愛(ài)珍 劉開(kāi)宇 孟益民,第四章 一元函數(shù)的導(dǎo)數(shù)與微分,本章學(xué)習(xí)要求: 理解導(dǎo)數(shù)和微分的概念。熟悉導(dǎo)數(shù)的幾何意義以及函數(shù)的可 導(dǎo)、可微、連續(xù)之間的關(guān)系。 熟悉一階微分形式不變性。 熟悉導(dǎo)數(shù)和微分的運(yùn)算法則,能熟練運(yùn)用求導(dǎo)的基本公式、 復(fù)合函數(shù)求導(dǎo)法、隱函數(shù)求導(dǎo)法、反函數(shù)求導(dǎo)法、參數(shù)方程 求導(dǎo)法、取對(duì)數(shù)求導(dǎo)法等方法求出函數(shù)的一、二階導(dǎo)數(shù)和微 分。 了解 n 階導(dǎo)數(shù)的概念,會(huì)求常見(jiàn)函數(shù)的 n 階導(dǎo)數(shù)。 熟悉羅爾中值定理、拉格朗日中值定理、柯西中值定理和泰 勒中值定理,并能較好運(yùn)用上述定理解決有關(guān)問(wèn)題(函數(shù)方 程求解、不等式的證明等)。 掌握羅必塔法則并能熟練運(yùn)用它計(jì)算有關(guān)的不定式極限。,第四節(jié) 函數(shù)的微分,第四章 一元函數(shù)的導(dǎo)數(shù)與微分,一. 函數(shù)的微分,三. 二階微分,微分的運(yùn)算法則,四. 微分在近似計(jì)算中的應(yīng)用,五.微分在誤差估計(jì)中的應(yīng)用,,若 y = f (x) 在點(diǎn) x0 處有(有限)導(dǎo)數(shù), 則,,現(xiàn)在反過(guò)來(lái)想一想:,若在 x0 點(diǎn)處 y = f (x) 的增量 y 可以,表示為 一個(gè)線性函數(shù)與一個(gè)高級(jí)無(wú)窮小量,之和的形式,回憶復(fù)合函數(shù)求導(dǎo)法則中的一個(gè)定理,那么, 我們自然要問(wèn) A = ?,,就是說(shuō), 在點(diǎn) x0 處若可用關(guān)于自變量的增 量 x 的線性函數(shù)逼近函數(shù)的增量 y 時(shí), 其關(guān)系式一定是 y = f (x0)x + o(x) 我們稱 f (x0)x (或 Ax) 為函數(shù)在點(diǎn) x0 處 增量的線性主部, 通常將它記為 dy = f (x0)x ( dy =Ax ).,微分,,,一. 函數(shù)的微分,1.微分的概念,y =Ax + o(x),此時(shí), 稱 f (x) 在點(diǎn) x0 處可微 。,設(shè) y = f (x) 在 U(x0) 有定義, 給 x0 以增量,x , 且 x0+x U(x0) 。,如果函數(shù)相應(yīng)的增量可表示為,則稱 y 的線性主部為 f (x)在點(diǎn) x0 處的微分,,記為 d y =Ax , 其中, A 叫微分系數(shù) 。,2.可微與可導(dǎo)的關(guān)系,y = f (x0)x + o(x),dy = f (x0)x,也就是說(shuō) , f (x) 在點(diǎn) x0 處的可微性與,可導(dǎo)性是等價(jià)的 ,,且 f (x) 在點(diǎn) x0 處可微 ,,則,解,什么意思?,自變量的增量就是自變量的微分:,函數(shù)的微分可以寫成:,該例說(shuō)明:,此外, 當(dāng) x 為自變量時(shí), 還可記,,即函數(shù) f (x) 在點(diǎn) x 處的導(dǎo)數(shù)等于函數(shù)的,微分 d y 與自變量的微分 d x 的商, 故導(dǎo)數(shù)也,可稱為微商.,哈哈!除法, 這一下復(fù)合函數(shù)、反函數(shù)、參數(shù)方程等的求導(dǎo)公式就好理解了.,3. 微分的幾何意義,,,,,,,,,,,,,,微分的運(yùn)算法則,1.微分的基本公式,微分的基本公式與導(dǎo)數(shù)的基本公式相似,微分公式一目了然, 不必講了.,一階微分形式不變性 ( 復(fù)合函數(shù)微分法則 ),在點(diǎn) x0 處可微.,按微分的定義,但,故,說(shuō)明什么問(wèn)題?,,,,,我們發(fā)現(xiàn) y = f (u) , 當(dāng) u 為中間變量 時(shí)的微分形式與 u 為自變量時(shí)的微分的形 式相同 , 均為 dy = f (u) du , 這種性質(zhì)稱為 函數(shù)的一階微分形式不變性 .,解,故,,,由一階微分形式不變性, 再來(lái)看 復(fù)合函數(shù)、反函數(shù)、參數(shù)方程等的求 導(dǎo)公式就會(huì)有另一種感覺(jué):,解,三. 二階微分,其二階微分為,設(shè)函數(shù) y = f (x) 二階可導(dǎo), 當(dāng) x 為自變量時(shí),,由此看出, 當(dāng) x 為自變量時(shí),,,除法,,類似可定義 n 階微分:,注意這里 x 是自變量,具有這種不變性?,看一下二階微分的情形:,性, 且可構(gòu)成復(fù)合函數(shù) y = f ( (t)) , 則,設(shè)函數(shù) y = f (x), x = (t) 都具有相應(yīng)的可微,就是說(shuō), 二階微分不具備微分形式不變性.,三. 微分在近似計(jì)算中的應(yīng)用,函數(shù)增量的近似值:,函數(shù)值的近似值:,解,所以, 球的體積增量大約為,得,解,四.微分在誤差估計(jì)中的應(yīng)用,設(shè)某個(gè)量的精確值為 A, 它的近似值為 a,,為 a 的相對(duì)誤差.,A 為測(cè)量 A 的絕對(duì)誤差限, 簡(jiǎn)稱 A 的絕對(duì)誤差.,為測(cè)量 A 的相對(duì)誤差限, 簡(jiǎn)稱 A 的相對(duì)誤差.,則稱:,| A a | 為 a 的絕對(duì)誤差;,則稱:,設(shè)測(cè)得圓鋼截面的直徑 D = 60.03 mm ,,測(cè)量 D 的絕對(duì)誤差限 D0.05 mm ,試估計(jì),計(jì)算圓鋼的截面積時(shí)的面積誤差,解,,由于D 的絕對(duì)誤差限 D0.05 mm, 所以,而,因此 , A 的絕對(duì)誤差限約為,A 的相對(duì)誤差限約為,已知測(cè)量 x 的絕對(duì)誤差限為 x ,,y 的絕對(duì)誤差:,y 的絕對(duì)誤差限約為,y 的相對(duì)誤差限約為,即有,若根據(jù)直接測(cè)量的 x 值計(jì)算 y 值 ,,

注意事項(xiàng)

本文(微積分學(xué)PPt標(biāo)準(zhǔn)課件18-第18講函數(shù)的微分)為本站會(huì)員(san****019)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  sobing.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!