喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=====================
學(xué)生姓名
賈振龍
班級(jí)
機(jī)制053
指導(dǎo)教師
陳錫渠
論文(設(shè)計(jì))題目
基于虛交點(diǎn)的圓錐孔端面尺寸數(shù)顯測(cè)量裝置
目前已完成任務(wù)
1. 開題報(bào)告及任務(wù)書
2. 英文資料和論文相關(guān)資料的搜索
3. 對(duì)于該測(cè)量裝置原理的研究和分析
4. 該測(cè)量裝置的結(jié)構(gòu)設(shè)計(jì)和三維建模
是否符合任務(wù)書要求進(jìn)度:符合
尚需完成的任務(wù)
1. 該測(cè)量裝置中各零件設(shè)計(jì)的進(jìn)一步完善
2. 對(duì)測(cè)量裝置測(cè)量精度的分析
3. 論文的撰寫
能否按期完成論文(設(shè)計(jì)):能
存在問題和解決辦法
存
在
問
題
1. 開題報(bào)告及任務(wù)書寫的不夠深入和規(guī)范
2. 裝置的結(jié)構(gòu)設(shè)計(jì)不合理
3. 裝置的三維模型需要加以修改
擬
采
取
的
辦
法
1. 查詢資料補(bǔ)足內(nèi)容
2. 修改更正不足內(nèi)容
3. 多請(qǐng)教老師,完善論文
指導(dǎo)教師簽 字
日期
年 月 日
教學(xué)院長(zhǎng)(系主任)
意 見
簽字: 年 月 日
河南科技學(xué)院本科畢業(yè)論文(設(shè)計(jì))中期進(jìn)展情況檢查表
畢業(yè)論文(設(shè)計(jì))任務(wù)書
題目名稱 基于虛交點(diǎn)的圓錐孔端面尺寸數(shù)顯測(cè)量裝置
學(xué)生姓名
賈振龍
所學(xué)專業(yè)
機(jī)械設(shè)計(jì)制造及其自動(dòng)化
班級(jí)
051班
指導(dǎo)教師姓名
陳錫渠
所學(xué)專業(yè)
機(jī)械設(shè)計(jì)制造及其自動(dòng)化
職稱
副教授
完成期限
2008年12月22日 至 2009年1月9日
一、論文(設(shè)計(jì))主要內(nèi)容及主要技術(shù)指標(biāo)
(一)主要內(nèi)容
圓錐孔端面尺寸數(shù)顯測(cè)量裝置的工作原理分析、精度分析,測(cè)量范圍確定,結(jié)構(gòu)設(shè)計(jì)(包括卡爪結(jié)構(gòu)結(jié)構(gòu)設(shè)計(jì)、不完整鉸鏈結(jié)構(gòu)設(shè)計(jì)、定位機(jī)構(gòu)設(shè)計(jì)、數(shù)顯系統(tǒng)選擇等)。
(二)主要技術(shù)指標(biāo)
最大測(cè)量直徑:150mm 測(cè)量精度:0.02mm
錐最大度: 1200
二、 畢業(yè)論文(設(shè)計(jì))的基本要求
1.畢業(yè)設(shè)計(jì)報(bào)告:有400字左右的中英文摘要,正文后有20篇左右的參考文獻(xiàn),正文中要引用5篇以上文獻(xiàn),并注明文獻(xiàn)出處。
2.有不少于2000漢字的與本課題有關(guān)的外文翻譯資料。
3.畢業(yè)設(shè)計(jì)字?jǐn)?shù)在20000字以上。
4.三維模型,相關(guān)圖紙。
三、畢業(yè)論文(設(shè)計(jì))進(jìn)度安排
1.2008年12月22日-2009年1月9日,下達(dá)畢業(yè)設(shè)計(jì)任務(wù)書;寒假期間完成英文資料翻譯和開題報(bào)告。
2. 2009年2月16-2月27日(第1-2周),指導(dǎo)教師審核開題報(bào)告、設(shè)計(jì)方案和英文資料翻譯。
3. 2009年3月2日-4月24日(第3-10周),畢業(yè)設(shè)計(jì)單元部分設(shè)計(jì)。
4. 2009年4月26日-5月1日(第10-11周),畢業(yè)設(shè)計(jì)中期檢查。
5. 2009年5月4日-5月22日(第12-14周),結(jié)構(gòu)設(shè)計(jì)、三維建模,整理、撰寫畢業(yè)設(shè)計(jì)論文。
6. 2009年5月25-6月5日(第15-16周)上交畢業(yè)設(shè)計(jì)報(bào)告,指導(dǎo)教師、評(píng)閱教師審查評(píng)閱設(shè)計(jì)報(bào)告,畢業(yè)設(shè)計(jì)答辯資格審查。畢業(yè)設(shè)計(jì)答辯,學(xué)生修改整理設(shè)計(jì)論文。
河南科技學(xué)院本科生畢業(yè)論文(設(shè)計(jì))開題報(bào)告
題目名稱 基于虛交點(diǎn)的圓錐孔端面尺寸數(shù)顯測(cè)量裝置
學(xué)生姓名
賈振龍
所學(xué)專業(yè)
機(jī)械設(shè)計(jì)制造及其自動(dòng)化
學(xué)號(hào)
20050334321
指導(dǎo)教師姓名
陳錫渠
所學(xué)專業(yè)
機(jī)械設(shè)計(jì)制造及其自動(dòng)化
職稱
副教授
完成期限
2008年12月22日至2009年6月5日
1、 選題的目的和意義
圓錐孔配合在機(jī)械設(shè)備中應(yīng)用十分廣泛。圓錐孔的加工雖不及內(nèi)孔、平面加工那樣廣泛,但在機(jī)械加工中也常遇到,不同用途的錐孔的要求也不一樣,在制造圓錐孔工件時(shí),需要控制工件的錐孔直徑尺寸(錐孔面與端面交線尺寸),當(dāng)尺寸精度要求較高時(shí),使用通用量具在生產(chǎn)現(xiàn)場(chǎng)很難實(shí)現(xiàn)對(duì)該尺寸的精確測(cè)量。而且圓錐孔的端面往往有毛刺或倒角,尤其是有倒角時(shí),所測(cè)點(diǎn)在實(shí)體上并不存在,轉(zhuǎn)化成測(cè)空間交點(diǎn)距離的問題,測(cè)空間交點(diǎn)距離也需專用測(cè)量工具并進(jìn)行計(jì)算,有時(shí)還需在工件上設(shè)置工藝孔或工藝凸臺(tái),增加了加工工序。
上述的測(cè)量方法要么不能進(jìn)行定量檢測(cè)、要么需專用檢具,而且還不能直接測(cè)出數(shù)據(jù),需利用所得數(shù)據(jù)進(jìn)行計(jì)算才可獲得所需尺寸,操作不便,測(cè)量時(shí)間也較長(zhǎng),不利于縮短工時(shí),提高生產(chǎn)率,且不適合生產(chǎn)現(xiàn)場(chǎng)使用,特別是不能在機(jī)上檢測(cè)。
為了解決上述種種問題,立此課題,利用大學(xué)所學(xué)的相關(guān)專業(yè)知識(shí)設(shè)計(jì)一種基于虛交點(diǎn)的圓錐孔端面尺寸數(shù)顯測(cè)量裝置。
二、國(guó)內(nèi)外研究現(xiàn)狀
目前,對(duì)于圓錐孔端面直徑的測(cè)量裝置及方法主要有以下幾種:
1、采用錐度塞規(guī)的方法測(cè)量,這種測(cè)量方法簡(jiǎn)單,但塞規(guī)的制造較困難,且不具有通用性。
2、利用兩個(gè)精密鋼球和通用量具間接測(cè)量,這對(duì)不同的錐孔要有相應(yīng)的精密鋼球,否則無(wú)法進(jìn)行。然而在實(shí)際測(cè)量中,會(huì)遇到各種尺寸、錐度不同的錐孔,一般難以提供相應(yīng)的精密鋼球。
3、采用鋼球式錐孔檢測(cè)工具測(cè)量,這種檢具測(cè)量時(shí)需要多次專用的工裝,并且檢具中的鋼球和檢套要有不同的規(guī)格,測(cè)量精度也不是很高。
4、“鋼球、圓柱組合法”,此測(cè)量裝置需兩個(gè)大小不同的精密鋼球,將它們同圓柱標(biāo)準(zhǔn)心軸或“三針”等進(jìn)行不同的組合,可測(cè)量任意大小的內(nèi)
圓錐孔。但是此測(cè)量裝置對(duì)鋼球和圓柱的要求很高,制造費(fèi)用較高,且測(cè)量時(shí)需要計(jì)算,測(cè)量精度不高。
5由深度千分尺、支承套和鋼球組成的測(cè)量裝置測(cè)量。支承套、鋼球根據(jù)被測(cè)量零件有關(guān)尺寸及形狀配置和更換。此測(cè)量裝置使用與具有深度孔的圓錐孔端面直徑測(cè)量,且測(cè)量時(shí)需要計(jì)算。
上述的方法有的測(cè)量設(shè)備成本較高,有的需專用檢具并計(jì)算,操作不便,均不適合生產(chǎn)現(xiàn)場(chǎng)使用,特別是不能在機(jī)上檢測(cè),因此設(shè)計(jì)制造出一種基于虛交點(diǎn)的圓錐孔端面尺寸數(shù)顯量具,能有效的解決上述問題。
三、主要研究?jī)?nèi)容
對(duì)現(xiàn)有圓錐孔錐度測(cè)量方法進(jìn)行比較,設(shè)計(jì)制造一種簡(jiǎn)單實(shí)用的自適應(yīng)圓錐孔端面直徑檢測(cè)的量具。包括量具的原理分析設(shè)計(jì)、裝置各個(gè)組成部分的具體設(shè)計(jì)并配備相關(guān)的二維視圖和三維模型、測(cè)量精度分析和總結(jié)。
其中要求為:
1最大測(cè)量直徑是150mm;
2.測(cè)量精度為0.02 ;
3.數(shù)顯直讀。
四、畢業(yè)論文(設(shè)計(jì))的研究方法或技術(shù)路線
畢業(yè)設(shè)計(jì)采取的研究方法:
查閱有關(guān)書籍,借助于網(wǎng)上數(shù)字圖書館收集資料,對(duì)課題進(jìn)行研究分析
總結(jié)前人的經(jīng)驗(yàn)技術(shù),提出對(duì)相關(guān)課題的新意見解
在指導(dǎo)老師的安排幫助下解決困難和問題
初步設(shè)計(jì)并計(jì)算測(cè)量裝置的各個(gè)組成部分
歸納總結(jié)的設(shè)計(jì)思路和過(guò)程,撰寫論文
五、 主要參考文獻(xiàn)與資料
[1]陳錫渠,王振寧,蘇建修,王占奎. 自適應(yīng)圓錐體端面直徑測(cè)量裝置[J].制造技術(shù)與機(jī)床,2008,(9):118~121
[2] 傅克寶. 一種測(cè)量?jī)?nèi)圓錐孔錐度和大徑的方法.北京理工大學(xué)機(jī)械工程與自動(dòng)化學(xué)院, 1999
[3]祝偉駿.內(nèi)圓錐孔截面直徑的測(cè)量與誤差分析.機(jī)械制造,1996
[4]張輝.鋼球式錐孔檢測(cè)工具.機(jī)械制造,1997年
[5]曲貴龍 李霄.圓錐孔的錐角和直徑的間接測(cè)量.測(cè)量與設(shè)備,2001
[6]楊光.機(jī)車傳動(dòng)鏈中大型精密錐孔的檢測(cè)原理與運(yùn)用.質(zhì)量管理,2005
[7]張煥州.測(cè)量錐口直徑的檢具.計(jì)量技術(shù),2003
[8]陳本慶.交點(diǎn)尺寸的測(cè)量.工具技術(shù),1999
[9]甄立志 李秀東 李加琦.大型錐孔加工方法及測(cè)量.機(jī)械工藝師,1999
[10]劉亞男.關(guān)于交點(diǎn)尺寸極坐標(biāo)測(cè)量方法的研究.測(cè)試技術(shù)學(xué)報(bào),1998
[11]郝衛(wèi)東.容柵位移傳感器.桂林電子工業(yè)學(xué)院學(xué)報(bào),1997
[12]王習(xí)文、齊欣、宋玉泉.容柵傳感器及其發(fā)展前景.吉林大學(xué)學(xué)報(bào)(工學(xué)版),2003
[13]周富臣,周鵬飛,張改. 機(jī)械制造計(jì)量檢測(cè)手冊(cè)[M].北京:機(jī)械工業(yè)出版社,1998
[14]雒運(yùn)強(qiáng). 使用機(jī)械加工測(cè)量技巧450例[M].北京:化學(xué)工業(yè)出版社,2008
[15]才家剛. 圖解常用量具的使用方法和測(cè)量實(shí)例[M].北京:機(jī)械工業(yè)出版社,2006
[16]鄭叔芳,吳曉琳. 機(jī)械工程測(cè)量學(xué)[M].北京:科學(xué)出版社,1999
[17]梁國(guó)明,張寶勤. 常用量具的使用與保養(yǎng)270問[M].北京:國(guó)防工業(yè)出版社,2007
六、指導(dǎo)教師審批意見
簽名:
年 月 日
河南科技學(xué)院新科學(xué)院畢業(yè)論文(設(shè)計(jì))指導(dǎo)過(guò)程記錄表
論文(設(shè)計(jì))題目
基于虛焦點(diǎn)的圓錐孔端面尺寸數(shù)顯測(cè)量裝置
學(xué)生姓名
賈振龍
專業(yè)
機(jī)械設(shè)計(jì)制造及其自動(dòng)化
學(xué)生學(xué)號(hào)
20050334321
班級(jí)
機(jī)制053班
指導(dǎo)教師姓名
陳錫渠
職稱
副教授
第1次指導(dǎo):
下達(dá)設(shè)計(jì)任務(wù),讓學(xué)生查閱相關(guān)資料,撰寫開題報(bào)告,并翻譯相關(guān)英文資料。
指導(dǎo)時(shí)間: 年 月 日
第2次指導(dǎo):
檢查開題報(bào)告和英文翻譯資料的完成情況。
指導(dǎo)時(shí)間: 年 月 日
第3次指導(dǎo):
查收開題報(bào)告和英文翻譯資料,指導(dǎo)學(xué)生開始制定測(cè)量裝置的設(shè)計(jì)方案。
指導(dǎo)時(shí)間: 年 月 日
第4次指導(dǎo):
要求學(xué)生認(rèn)真分析要求,確定工作原理,并確定出最合適的設(shè)計(jì)方案。
指導(dǎo)時(shí)間: 年 月 日
第5次指導(dǎo):
指導(dǎo)學(xué)生查閱資料,對(duì)裝置的各個(gè)結(jié)構(gòu)進(jìn)行設(shè)計(jì)。
指導(dǎo)時(shí)間: 年 月 日
第6次指導(dǎo):
檢查學(xué)生畢業(yè)設(shè)計(jì)進(jìn)度,準(zhǔn)備進(jìn)行中期檢查。
指導(dǎo)時(shí)間: 年 月 日
河南科技學(xué)院新科學(xué)院畢業(yè)論文(設(shè)計(jì))指導(dǎo)過(guò)程記錄表
第7次指導(dǎo):
中期檢查,學(xué)生基本按進(jìn)度進(jìn)行,預(yù)計(jì)能按期完成設(shè)計(jì)任務(wù)。
指導(dǎo)時(shí)間: 年 月 日
第8次指導(dǎo):
對(duì)學(xué)生的設(shè)計(jì)原理和裝置的結(jié)構(gòu)設(shè)計(jì)方面問題進(jìn)行指導(dǎo)。
指導(dǎo)時(shí)間: 年 月 日
第9次指導(dǎo):
指導(dǎo)學(xué)生結(jié)合設(shè)計(jì)中出現(xiàn)的問題,進(jìn)步探討研究,找到解決辦法。指導(dǎo)學(xué)生整理畢業(yè)設(shè)計(jì)資料,撰寫畢業(yè)設(shè)計(jì)論文。
指導(dǎo)時(shí)間: 年 月 日
第10次指導(dǎo):
指導(dǎo)學(xué)生完善裝置的結(jié)構(gòu)設(shè)計(jì),繼續(xù)調(diào)試。指導(dǎo)學(xué)生修改畢業(yè)設(shè)計(jì)論文。
指導(dǎo)學(xué)生制作畢業(yè)設(shè)計(jì)的.ppt文件。
指導(dǎo)時(shí)間: 年 月 日
第11次指導(dǎo):
要求學(xué)生對(duì)相關(guān)涉及內(nèi)容進(jìn)一步修改完善,并對(duì)學(xué)生講述畢業(yè)設(shè)計(jì)答辯注意事項(xiàng),查收學(xué)生畢業(yè)設(shè)計(jì)論文及相關(guān)資料。論文完成并交于導(dǎo)師,基本可以稍作修改。
指導(dǎo)時(shí)間: 年 月 日
第12次指導(dǎo):
指導(dǎo)學(xué)生根據(jù)答辯小組意見,對(duì)相關(guān)資料作最后修改完善。
指導(dǎo)時(shí)間: 年 月 日
說(shuō)明:
1、此表為指導(dǎo)教師指導(dǎo)學(xué)生畢業(yè)論文(設(shè)計(jì))的過(guò)程記錄表,由指導(dǎo)教師填寫。
2、要求指導(dǎo)教師每周至少指導(dǎo)學(xué)生2次,每周集中填寫指導(dǎo)記錄表1次。
3、論文(設(shè)計(jì))完成后,此表由指導(dǎo)教師交各系教務(wù)員保存。
Bevel gear of the latest developments in measurement technology
1 Overview
Bevel gear drive mechanism in the car, helicopter, machine tools and electric tools manufacturing industry, has been widely used. The use of different performance of the bevel gears are also different quality requirements, can be summarized including: ① a good contact area, can be a reliable torque transmission power; ② good match geometry, a smooth transfer of the movement, in order to ensure uniform load , transmission smooth, vibration small, noise low. Factories are usually small devices and dual-spot detection of rolling contact tester to control the quality of bevel gear, but in reality it is very difficult to determine accurately the performance of the bevel gear.
Bevel gear and the precision of measurement of cylindrical gears similar, can generally be classified into three types: ① Coordinate Geometry Analysis of measurement type. That is, the bevel gear as a geometric entity, its geometric elements, respectively, the geometric precision of individual measurements; Gear Measuring Center is the main measuring instruments. ② Comprehensive engagement measurement accuracy. That is, the bevel gear transmission as a component, the accuracy of their transmission, contact spots, a comprehensive measurement of the vibration noise. The measuring instruments are mainly one-sided meshing bevel gear tester, bevel gear meshing two-sided bevel gear measuring and inspection machine rolling. Bevel Gear ③ the overall measurement error. It will bevel gear transmission as a function for the realization of the geometric entities, or by coordinate measuring method in accordance with the geometric precision of a single measurement to measure the overall error of bevel gears, bevel gears to achieve a single transmission error and the geometric precision of the intrinsic link between the quality of the analysis; or by mating single measurement, the use of mesh point scan measurement of bevel gears for the overall error of measurement, has been integrated bevel gear movement accuracy, contact spots, as well as the geometric precision of the individual. Therefore, the overall error of measurement of bevel gear is a measurement of the first two methods of integration and development.
With the coordinate measuring technology, computer control and measurement technology, in recent years, the overall error of measurement of bevel gear technology research development soon. Gear Measuring Center as a result of multi-cylinder coordinates, such as multi-function measurement instrument performance, data-processing capacity, bevel gear-type coordinates of analytic geometry measurement technology, has been the development of a single geometric error of measurement to the overall error of measurement of bevel gear, improved cone gear design, processing, quality testing to determine the accuracy and the use of the forecast performance of the bevel gear, such as the level of manufacturing technology. By China's own development, based on the "control point movement - geometric measurement principle" on one side of the bevel gear meshing point scanning technology and technology development based on the overall error of the bevel gear measuring instrument, it is more towards the production of the first line, so that China Bevel Gear measurement theory, the practical application of measurement technology has been further improved and developed.
2.the main bevel gear precision measurement method and apparatus
2.1 Coordinate-style geometric measurement and analysis equipment
Machinery Exhibition into a straight bevel gear-type coordinate measuring instrument there earlier products to represented KP42-type, but the complex structure of high accuracy. Since 1990, both before and after, CNC Gear Measuring Center to the market, coordinates arc bevel gear-type geometry of measurement error is the rapid development and popularization and application. Today's market, Gear Measuring Center from abroad, whether it is Klingberg Germany's P63, or the United States Gleason / mar the GMX275, M & M's Sigma 3, have been measured with the function of bevel gear. These instruments have reached VDI / VDE level provided a space measuring uncertainty for more than 2 microns; bevel gear on the geometric error of a single test, such as pitch deviation (including single pitch deviation, the cumulative pitch deviation , total cumulative pitch deviation), tooth profile deviations (including a total deviation of tooth profile, the shape of tooth profile error, tooth profile tilt deviation) and teeth to the error (including the teeth to the total deviation, deviation of the shape of teeth to the teeth to tilt deviation) and output deviation of three-dimensional shape of tooth surface morphology map.
2.2 Integrated single-sided mesh rolling test measurement method and apparatus
Single-sided bevel gear meshing scroll detection methods have been used in production for many years. N0.513 Gleason in the United States rolling test machine as an example, in the measured single-sided bevel gear pair meshing, the simulation of its work, and to a certain degree of speed and load, adjust the V / H, for colored contact area (spot ) testing to determine the bevel gear pair under test contact conditions; through the use of acceleration sensors, pickup of vibration and noise measured on the tooth scan frequency harmonic detection. This method is "quasi-dynamic" measurement method, which bevel gear for the accuracy of detection is far from complete or accurate enough. Optical encoder used as the base point of view, to cut bevel gears for the accuracy of detection of the integrated single-sided meshing bevel gear tester, such as Germany's Klingberg PSKE900, because a single test items, in particular, it is difficult for the basis of test results Bevel Gear Machine parameters adjusted to give guidance, to improve processing quality bevel gears. Less cost-effective and therefore not much used in production.
Gleason has introduced in recent years, the Phoenix 500HCT CNC bevel gear inspection machine is rolling with a rolling test at the same time and one-sided mating tester measurement function, measurement of both the tangential bevel gear integrated error, while the number of measuring cone gear contact area, three-dimensional structure of the noise analysis. The advanced models, such products represent the contemporary level of development, although expensive, but there are individual users at home. Klingberg also similar GKC60, such as Orion Hole T50 CNC bevel gear inspection machine.
2.3Measurement error overall and equipment
The overall error of measurement of bevel gear is rotating in the same angle displacement coordinates of the order will be based on the meshing bevel gear tooth surface of the work of the detection point measured by the geometric error of all the individual integrated into a bevel gear overall error map, and on this basis, bevel gears for the completion of a single geometric precision, and accuracy of an integrated campaign bevel gear analysis of contact state deputy measurement, the use of bevel gears to achieve the performance and quality assessment and monitoring. Bevel gear and the overall error of measurement apparatus, the current can be divided into three second-class. A class of analytic geometry for coordinate measurement type, the method is divided into "point-to-point measurement" and "point of scan measurements," equipment used in two ways for CNC Gear Measuring Center, but the allocation package by the measurement different; the other for the mating-type movement measurement geometry (ie, mesh-type scan measurement point, the method for our first), the apparatus used for single-sided meshing bevel gear tester, equipped with a dedicated measurement bevel gear and measurement software package.
(1) coordinate the overall bevel gear-type point-to-point measurement error
Gear Measurement Center in, along with three-dimensional measurement of bevel gear tooth profile and tooth to the two directions, according to a pre-determined interval, the detection of the measured points of the tooth surface (usually the 5 tooth profile, tooth up 9 a total of 45 points) for the geometry error of measurement of 1.1 points. This method can be avoided and the measured three-dimensional probe in the measurement of tooth surface when the impact of friction and the measurement results. The measurement method is based on "direct measurement" principle, concrete steps are: first bevel gear in accordance with the adjustment of machine parameters and tool geometry parameters to be processed by calculating the large and small bevel gear tooth surface ideal geometric processing parameters; the tooth tooth surface as a reference, respectively, and the actual process (or after heat treatment) of large and small gear tooth surface compared to the actual measured tooth surface of the tooth surface with an ideal geometric deviation. MATCH procedures through the use of dedicated, determined corresponding to the actual measured tooth surface machining parameters of the illusion; re-engagement model in accordance with TCA analysis, calculated by the bevel gear pair integrated deviation and tangential contact conditions, test whether or not to meet the requirements. If necessary, the corresponding software will be based on the measurement results, re-calculate and adjust the machining parameters in order to re-try all they can be processed into a more satisfied with the quality of products.
(2) coordinates of point scanning type bevel gear of the overall measurement error
Seiki, Osaka, Japan recently proposed using two-dimensional measurement of bevel gear tooth surface measurement to point scanning method has been satisfactory and reliable results. This method has the following characteristics: the workpiece by controlling the rotation, the parallel displacement of probe movement, to avoid the probe and the tooth surface friction between the adverse effects of measurement; measurement as a result of the use of scanning, surveying the region to cover the entire tooth surface, including Top Gear, as well as close to large and small end of the region; measurement path can have a wide range of choices, usually tooth number and tooth number of each to the three, a total of six; each sample the number of scanning lines of up to 113 points, as sampling density, to reflect minor tooth surface waviness (which often is not pleasant ripple of the main sources of noise, the conventional point-to-point measurement method difficult to measure). The method used the "conjugation of" principle, the concrete steps are: First of all, the basis of machining parameters and tool parameters to be the ideal gear tooth surface geometry processing parameters, to calculate the conjugate with it, no transmission error of the virtual conjugate of the pinion tooth surface geometry parameters; the actual processing of the large gear tooth surface with the ideal gear tooth surface processing compare measurements to detect gear tooth profile and the relative deviation upward; the actual processing of the pinion tooth surface and calculation of be conjugate Virtual pinion tooth surface compared with measurements, to detect the gear tooth profile and the relative deviation upward. According to the relative deviation of measured, calculated by the deputy of the three-dimensional bevel gear tooth surface morphology of the comprehensive plan deviation, deviation and tangential contact with the integrated form of (including access to the path of contact area shape, size, location, etc.). By physical measurement, than on the authentication, point-to-point and point measurements of the measurement scan measurement results are consistent.
(3) mating-type bevel gear to scan the whole point of the measurement error
Chengdu Tool Research Institute of the bevel gear to mesh-type scan measurement point is one-sided meshing bevel gear tester, the design of the installation location by using a special measuring bevel gear and bevel gear test for measuring the rolling one-sided engagement. This measurement of bevel gear pair "basis" cone measured geometric parameters and the geometric parameters of gear pair are all the same. Measurement methods or the use of corrosion-paste method, in large and small measurement of the gear teeth and white make the necessary gear tooth profile or ridge to the measurement, by measuring the bevel gear or the gear tooth profile and match to the measurement of ridge bevel gear of the measured tooth contact transmission, the meshing of bevel gears to complete scanning the overall error of measurement points. Measurement path and measuring the number of gear teeth, and a total of 3 +3 is generally 6. Mating-type bevel gear to scan the overall error of measurement points used the "relative measurement of the local benchmark" principle. Measurement of specific steps are as follows: In accordance with the actual bevel gear pair sports / test experiment (or experience), elected by the factory can best meet the needs of the bevel gear use requirements vice as a "benchmark" bevel gear pair (known as the local benchmark), its integrated bias-cut to a cut tooth to the integrated form of bias and the contact area was identified as the assessment of the accuracy of the bevel gear of the main reference Vice indicators. Measurement of Bevel Gear and the local base of meshing bevel gears, bevel gears in mesh single tester measured tooth profile deviation of a consolidated Board - measured (local base bevel gear Deputy - Vice-bevel gear benchmarks, the same below), integrated to the deviation of tooth Board - measuring, cutting to the integrated deviation of the Board - measuring a tooth integrated deviation Board - measuring, shape Council contact area - measured, as well as the integrated deviation of three-dimensional tooth surface morphology of Fig Bureau - measuring and so on, and was recognized as a bulk evaluation of bevel gear testing The accuracy of a single bevel gear indicators mainly refer to baseline data. Measured part bevel gear and bevel gear measuring method according to the same measurement, the deviation of the workpiece has been Bevel Gear - Bevel Gear measurement data; by the computation of the corresponding deviations workers - Bureau data (that is, relative to the workpiece bevel gear partial cone base Gear indicator of the corresponding deviations of the accuracy). And then measured in accordance with the Public Works - Bureau deviation of the accuracy of data and indicators for the development of tolerance, to determine the bevel gear of the level of quality and interchangeability.
Bevel gear overall error measurement method is simple, fast and reliable measurement information-rich, especially for mass production. As a result of measurement must be measured using special gear, so this method should not be used for a single measurement of small quantities. However, since the bevel gear at the same time the overall error of measurement also has a rolling bevel gear tester, so it can be used for single-piece and small-batch precision bevel gear Deputy comprehensive detection and production of the test workpiece and cutting tool debugging.
3 Conclusion
Through the bevel gears in recent years the field of measuring the status of technology research and development, both at home and abroad to highlight the overall error of measurement of bevel gear technology, methods and development of the corresponding equipment. China's self-developed scanning mating-type bevel gear at the overall error of measurement technology, has been gradually recognized by domestic and foreign counterparts; technology development based on the overall error of the bevel gear measuring instrument is to the production line and continue to improve measurement practice . It is believed that the mesh-style points based on scanning the overall error of measurement of bevel gear technology, the establishment of precision bevel gear bulk products database, it is very possible to adopt in accordance with the use of computer-assisted measurement technique to achieve automatic arc bevel gear pair quickly.
錐齒輪測(cè)量技術(shù)的最新進(jìn)展
1?概述
錐齒輪傳動(dòng)機(jī)構(gòu)在汽車、直升飛機(jī)、機(jī)床及電動(dòng)工具制造業(yè)中,得到了廣泛的應(yīng)用。不同的用途對(duì)錐齒輪性能質(zhì)量的要求也不同,歸納起來(lái)包括:①有良好的接觸區(qū),能可靠的傳遞動(dòng)力扭矩;②有良好匹配的幾何形狀,能平穩(wěn)的傳遞運(yùn)動(dòng),從而保證載荷均勻、傳動(dòng)平穩(wěn)、振動(dòng)小、噪音低。工廠通常采用雙嚙儀及檢測(cè)接觸斑點(diǎn)的滾動(dòng)檢查儀來(lái)控制錐齒輪的質(zhì)量,但實(shí)際上很難精確判定錐齒輪的使用性能。
錐齒輪的精度測(cè)量方法和圓柱齒輪類同,通??煞譃槿N:①坐標(biāo)式幾何解析測(cè)量法。即把錐齒輪作為一個(gè)幾何實(shí)體,對(duì)其幾何元素分別進(jìn)行單項(xiàng)幾何精度的測(cè)量;齒輪測(cè)量中心是其主要測(cè)量?jī)x器。②嚙合式綜合精度測(cè)量法。即把錐齒輪作為一個(gè)傳動(dòng)元件,對(duì)其傳動(dòng)精度、接觸斑點(diǎn)、振動(dòng)噪音進(jìn)行綜合測(cè)量。其測(cè)量?jī)x器主要有錐齒輪單面嚙合檢查儀、錐齒輪雙面嚙合測(cè)量?jī)x及錐齒輪滾動(dòng)檢驗(yàn)機(jī)。③錐齒輪整體誤差測(cè)量法。它將錐齒輪作為一個(gè)用于實(shí)現(xiàn)傳動(dòng)功能的幾何實(shí)體,或用坐標(biāo)測(cè)量法按單項(xiàng)幾何精度測(cè)量方式測(cè)量出錐齒輪的整體誤差,實(shí)現(xiàn)錐齒輪單項(xiàng)幾何誤差和傳動(dòng)精度、質(zhì)量之間內(nèi)在聯(lián)系的分析研究;或按單面嚙合測(cè)量方式、采用嚙合點(diǎn)掃描測(cè)量方法,對(duì)錐齒輪的整體誤差進(jìn)行測(cè)量,得到錐齒輪的綜合運(yùn)動(dòng)精度、接觸斑點(diǎn)以及各單項(xiàng)幾何精度。因此,錐齒輪整體誤差測(cè)量法是前兩種測(cè)量方法的集成和發(fā)展。
隨著坐標(biāo)測(cè)量技術(shù)、計(jì)算機(jī)控制與測(cè)量技術(shù)的發(fā)展,近年來(lái)對(duì)錐齒輪整體誤差測(cè)量技術(shù)的研究得到很快的發(fā)展。由于齒輪測(cè)量中心等圓柱式多坐標(biāo)多功能測(cè)量?jī)x器的測(cè)量性能、數(shù)據(jù)處理能力的提高,錐齒輪的坐標(biāo)式幾何解析測(cè)量技術(shù),已由單項(xiàng)幾何誤差測(cè)量發(fā)展到錐齒輪整體誤差測(cè)量,提高了錐齒輪設(shè)計(jì)、加工、精度質(zhì)量的檢測(cè)判定以及使用性能的預(yù)測(cè)等整個(gè)錐齒輪制造技術(shù)的水平。由我國(guó)自行開發(fā)、基于“可控點(diǎn)運(yùn)動(dòng)—幾何測(cè)量原理”的錐齒輪單面嚙合點(diǎn)掃描測(cè)量技術(shù)及基于該技術(shù)開發(fā)的錐齒輪整體誤差測(cè)量?jī)x,也正在更多地走向生產(chǎn)第一線,使我國(guó)錐齒輪測(cè)量理論、測(cè)量技術(shù)的實(shí)際應(yīng)用得到了進(jìn)一步的提高和發(fā)展。
2?錐齒輪精度主要測(cè)量方法及儀器
2.1坐標(biāo)式幾何解析測(cè)量方法及儀器
機(jī)械展成坐標(biāo)式直錐齒輪測(cè)量?jī)x較早就有產(chǎn)品,以瑞士馬格KP42型為代表,精度很高但結(jié)構(gòu)復(fù)雜。自1990年前后,CNC齒輪測(cè)量中心推向市場(chǎng),坐標(biāo)式弧錐齒輪幾何形狀誤差測(cè)量方法才有了迅速發(fā)展并得到推廣應(yīng)用。現(xiàn)今市場(chǎng)上國(guó)外的齒輪測(cè)量中心,無(wú)論是德國(guó)克林伯格的P63,還是美國(guó)格里森/馬爾的GMX275、M&M的西格馬3,都已具備了測(cè)量錐齒輪的功能。這些儀器都達(dá)到VDI/VDE等級(jí)規(guī)定的1級(jí),空間測(cè)量不確定度在2微米以上;可對(duì)錐齒輪的單項(xiàng)幾何誤差進(jìn)行檢測(cè),如齒距偏差(包括單個(gè)齒距偏差、齒距累計(jì)偏差、齒距累計(jì)總偏差)、齒廓偏差(包括齒廓總偏差、齒廓形狀偏差、齒廓傾斜偏差)、齒向偏差(包括齒向總偏差、齒向形狀偏差、齒向傾斜偏差)并可輸出三維齒面形狀偏差形貌圖等。
2.2?單面嚙合滾動(dòng)檢驗(yàn)綜合測(cè)量方法及儀器
錐齒輪單面嚙合滾動(dòng)檢測(cè)方法在生產(chǎn)中已經(jīng)使用多年。以美國(guó)格里森N0.513滾動(dòng)檢驗(yàn)機(jī)為例,在被測(cè)錐齒輪副單面嚙合的情況下,模擬其工作狀態(tài),加以一定的速度和載荷,調(diào)整V/H,進(jìn)行著色接觸區(qū)(斑點(diǎn))的檢測(cè),以判定該被測(cè)錐齒輪副的接觸狀況;借助于加速度傳感器、拾音器測(cè)量其振動(dòng)和噪音,對(duì)齒頻諧波進(jìn)行掃描檢測(cè)。這種方法屬于“準(zhǔn)動(dòng)態(tài)”測(cè)量方法,它對(duì)于錐齒輪的精度檢測(cè)是不夠完整、不夠準(zhǔn)確的。而采用光電編碼器作為角度基準(zhǔn)、用于錐齒輪切向綜合精度檢測(cè)的錐齒輪單面嚙合檢查儀,如德國(guó)克林伯格公司的PSKE900,因其檢測(cè)項(xiàng)目單一,尤其難以根據(jù)檢測(cè)結(jié)果對(duì)錐齒輪加工機(jī)床參數(shù)的調(diào)整給以指導(dǎo)、以改進(jìn)錐齒輪加工質(zhì)量。性價(jià)比較差,故生產(chǎn)中不多采用。
近年來(lái)格里森公司推出的鳳凰500HCT數(shù)控錐齒輪滾動(dòng)檢驗(yàn)機(jī)則同時(shí)具備了滾動(dòng)檢驗(yàn)機(jī)和單面嚙合檢查儀的測(cè)量功能,既能測(cè)量錐齒輪的切向綜合誤差,又能數(shù)字化測(cè)量錐齒輪接觸區(qū)、進(jìn)行三維結(jié)構(gòu)噪音分析等。該機(jī)型功能先進(jìn),代表了該類產(chǎn)品當(dāng)代的發(fā)展水平,雖價(jià)格昂貴,但在國(guó)內(nèi)已有個(gè)別用戶。與此類似的還有克林伯格GKC60、奧立孔T50等數(shù)控錐齒輪檢驗(yàn)機(jī)。
2.3?整體誤差測(cè)量方法及儀器
錐齒輪整體誤差測(cè)量是在同一個(gè)回轉(zhuǎn)角度位移坐標(biāo)上按嚙合順序?qū)㈠F齒輪工作齒面上各檢測(cè)點(diǎn)所測(cè)得的所有單項(xiàng)幾何誤差集成為一個(gè)錐齒輪整體誤差圖,并以此為基礎(chǔ),完成對(duì)于錐齒輪單項(xiàng)幾何精度、綜合運(yùn)動(dòng)精度以及錐齒輪副接觸狀態(tài)的分析計(jì)量,實(shí)現(xiàn)對(duì)于錐齒輪使用性能和質(zhì)量的評(píng)估和監(jiān)控。錐齒輪整體誤差測(cè)量方法和儀器,目前可分為二類三種。一類為坐標(biāo)式幾何解析測(cè)量法,該方法又分為“點(diǎn)到點(diǎn)測(cè)量法”和“點(diǎn)掃描測(cè)量法”,兩種方法采用的儀器都為CNC齒輪測(cè)量中心,但配用的測(cè)量軟件包有所不同;另一類為嚙合式運(yùn)動(dòng)幾何測(cè)量法(即嚙合式點(diǎn)掃描測(cè)量法,該方法為我國(guó)首創(chuàng)),所采用的儀器為錐齒輪單面嚙合檢查儀,配有專用的測(cè)量錐齒輪和測(cè)量軟件包。
(1)坐標(biāo)式點(diǎn)到點(diǎn)錐齒輪整體誤差的測(cè)量
在齒輪測(cè)量中心上,用三維測(cè)頭沿錐齒輪的齒廓和齒向兩個(gè)方向,按預(yù)先確定的間距,對(duì)被測(cè)齒面各檢測(cè)點(diǎn)(通常為齒廓上5處、齒向上9處,共45點(diǎn))的幾何形狀誤差進(jìn)行一點(diǎn)一點(diǎn)的測(cè)量。這種方法可以避免三維測(cè)頭和被測(cè)齒面間在測(cè)量時(shí)產(chǎn)生摩擦力而影響測(cè)量結(jié)果。該測(cè)量方法采用的是“直接測(cè)量”?原理,具體步驟為:首先根據(jù)錐齒輪加工機(jī)床的調(diào)整參數(shù)和刀具幾何參數(shù),通過(guò)計(jì)算得到被加工大、小錐齒輪理想加工齒面的幾何參數(shù);將該齒面作為參照齒面,分別與實(shí)際加工(或經(jīng)熱處理后)的大、小齒輪的齒面進(jìn)行比較,測(cè)得實(shí)際齒面與理想齒面的幾何偏差。借助于專用的MATCH程序,確定相應(yīng)于被測(cè)實(shí)際齒面的假象機(jī)床加工參數(shù);再按照嚙合模型進(jìn)行TCA分析,計(jì)算得到錐齒輪副的切向綜合偏差和接觸狀況,檢驗(yàn)是否滿足要求。如有必要,相應(yīng)軟件將根據(jù)測(cè)量結(jié)果,重新計(jì)算并調(diào)整機(jī)床加工參數(shù),以便再次試切時(shí),能加工出質(zhì)量更滿意的產(chǎn)品。?
(2)坐標(biāo)式點(diǎn)掃描錐齒輪整體誤差的測(cè)量
日本大阪精機(jī)近來(lái)提出的、采用二維測(cè)頭對(duì)錐齒輪齒面進(jìn)行點(diǎn)掃描測(cè)量的方法,得到了可靠滿意的測(cè)量結(jié)果。該方法具有以下特點(diǎn):通過(guò)控制工件的回轉(zhuǎn)、測(cè)頭的平行位移運(yùn)動(dòng),避免了測(cè)頭與齒面間的摩擦力對(duì)測(cè)量的不利影響;由于采用掃描測(cè)量方式,測(cè)量區(qū)域可覆蓋整個(gè)齒面包括齒頂以及接近大、小端的區(qū)域;測(cè)量路徑可有多種選擇,通常齒形數(shù)及齒向數(shù)各為3條,共6條;每條掃描線上的采樣數(shù)可達(dá)113個(gè)點(diǎn),由于采樣密度大,能夠反映齒面上的微小波紋度(該波紋往往是不悅耳噪音的主要來(lái)源,用常規(guī)的點(diǎn)到點(diǎn)測(cè)量方法難以測(cè)量)。該方法采用的是“共軛測(cè)量”原理,其具體步驟為:首先根據(jù)機(jī)床加工參數(shù)和刀具參數(shù)計(jì)算得到大齒輪理想加工齒面的幾何參數(shù),計(jì)算出與它相共軛、無(wú)傳動(dòng)誤差的虛擬共軛小齒輪的齒面幾何參數(shù);將實(shí)際加工的大齒輪齒面與理想加工大齒輪齒面進(jìn)行對(duì)比測(cè)量,檢測(cè)出齒廓及齒向上的相對(duì)偏差;將實(shí)際加工的小齒輪齒面與計(jì)算得到的虛擬共軛小齒輪齒面進(jìn)行對(duì)比測(cè)量,檢測(cè)出齒廓及齒向上的相對(duì)偏差。根據(jù)所測(cè)得的相對(duì)偏差,計(jì)算得到該錐齒輪副的三維齒面綜合偏差形貌圖、切向綜合偏差和接觸形態(tài)(包括接觸路徑,接觸區(qū)域形狀、大小位置等)。經(jīng)實(shí)物測(cè)量、比對(duì)驗(yàn)證,點(diǎn)到點(diǎn)測(cè)量法和點(diǎn)掃描測(cè)量法的測(cè)量計(jì)算結(jié)果是一致的。
(3)嚙合式點(diǎn)掃描錐齒輪整體誤差的測(cè)量
成都工具研究所提出的錐齒輪嚙合式點(diǎn)掃描測(cè)量法,是在錐齒輪單面嚙合檢查儀上,按設(shè)計(jì)安裝位置、采用特殊測(cè)量錐齒輪與被測(cè)錐齒輪進(jìn)行單面嚙合的滾動(dòng)測(cè)量。這種測(cè)量錐齒輪副的“基礎(chǔ)”幾何參數(shù)和被測(cè)錐齒輪副的幾何參數(shù)是完全一樣的。測(cè)量時(shí)采用腐蝕方法或粘貼方法,在大、小測(cè)量齒輪相間的輪齒上做成所需的齒廓或齒向測(cè)量棱線,通過(guò)測(cè)量錐齒輪的齒廓或齒向測(cè)量棱線與相配對(duì)的被測(cè)錐齒輪齒面接觸傳動(dòng),完成錐齒輪的嚙合點(diǎn)掃描整體誤差測(cè)量。測(cè)量路徑數(shù)與測(cè)量齒輪齒數(shù)有關(guān),一般為3+3共6條。錐齒輪嚙合式點(diǎn)掃描整體誤差測(cè)量采用的是“局部基準(zhǔn)相對(duì)測(cè)量”原理。具體測(cè)量步驟如下:根據(jù)錐齒輪副實(shí)際跑車/試車實(shí)驗(yàn)(或經(jīng)驗(yàn)),由廠方選出能最佳滿足使用要求的錐齒輪副作為“基準(zhǔn)”錐齒輪副(稱為局部基準(zhǔn)),它的切向綜合偏差、一齒切向綜合偏差及接觸區(qū)形態(tài)被確認(rèn)為評(píng)定該對(duì)錐齒輪副精度的主要參照指標(biāo)。測(cè)量錐齒輪和局部基準(zhǔn)錐齒輪相嚙合,在錐齒輪單面嚙合檢查儀上測(cè)得綜合齒廓偏差局—測(cè)(局部基準(zhǔn)錐齒輪副—測(cè)量基準(zhǔn)錐齒輪副,下同)、綜合齒向偏差局—測(cè)、切向綜合偏差局—測(cè)、一齒綜合偏差局—測(cè)、接觸區(qū)形態(tài)局—測(cè)以及三維齒面綜合偏差形貌圖局—測(cè)等,并被確認(rèn)為批量錐齒輪檢測(cè)時(shí)評(píng)定該單個(gè)錐齒輪主要精度指標(biāo)的參考基準(zhǔn)數(shù)據(jù)。被測(cè)工件錐齒輪和測(cè)量錐齒輪按同樣方法進(jìn)行測(cè)量,得到各項(xiàng)偏差的工件錐齒輪—測(cè)量錐齒輪數(shù)據(jù);經(jīng)運(yùn)算得到相應(yīng)各項(xiàng)偏差工—局?jǐn)?shù)據(jù)(即工件錐齒輪相對(duì)于局部基準(zhǔn)錐齒輪的相應(yīng)各項(xiàng)精度指標(biāo)的偏差)。然后根據(jù)所測(cè)得的工—局偏差數(shù)據(jù)和制定的精度指標(biāo)公差范圍,來(lái)判定錐齒輪的質(zhì)量