張小樓礦2.4Mta新井設計【含CAD圖紙+文檔】
張小樓礦2.4Mta新井設計【含CAD圖紙+文檔】,含CAD圖紙+文檔,張小樓礦,mta,設計,cad,圖紙,文檔
專
題
部
分
張小樓微震規(guī)律分析研究
摘要:為有效預防礦井沖擊地壓的發(fā)生,采用SOS微震監(jiān)測系統(tǒng)對煤巖體內(nèi)微震活動進行全時連續(xù)監(jiān)測?;谖⒄鸨O(jiān)測系統(tǒng)確定單日微震累計能量和震動頻率兩個參量進行危險程度的分析和評價。對95206工作面附近和下山區(qū)域進行了微震時序分析和礦震空間演化規(guī)律分析,表明礦震活動比較穩(wěn)定,強烈微震活動事件發(fā)生前,巖體已經(jīng)出現(xiàn)大量的弱微震活動,這些弱微震活動時期為強震動的發(fā)生積蓄了更多的能量。煤巖層在超前支承壓力作用下已經(jīng)開始出現(xiàn)大范圍斷裂和破壞。從整個回采過程中看,礦震大多分布在褶曲一翼和斷層附近。對礦井微震活動的監(jiān)測和規(guī)律分析有助于對礦震和沖擊地壓的防治。
關(guān)鍵詞:微震監(jiān)測;回采工作面;微震時序和空間演化分析;沖擊礦壓
Abstract: For the effective prevention of mine rock burst occurrence, using SOS microseismic monitoring system on coal rock body of microseismic activities for the whole continuous monitoring. Based on microseismic monitoring system determines the one-day microseismic accumulative energy and vibration frequency of two parameters for risk analysis and evaluation. In 95206 working face and down near the region were seismic sequence analysis and seismic spatial evolution analysis of mine earthquake activity, showed relatively stable, strong seismic activity before the occurrence of rock mass, has been a lot of weak seismic activity, these weak microseismic activity period for strong earthquake occurrence accumulated more energy. Coal seam in advance support under pressure has begun to appear big range of fracture and damage. From the entire process of mining, ore earthquake are mostly located in and near the fault fold a wing. The mine microseismic activity monitoring and analysis of rockburst and contribute to the prevention of the impact ground pressure.
Key words: microseismic monitoring; working face; temporal and spatial evolution analysis of microseisms; shock pressure
1引言
1.1微震簡介
1.1.1微震概念及危害
微震屬于礦山動力現(xiàn)象,是礦山壓力的一種特殊顯現(xiàn)形式。
微震可以定義為礦山井巷或采場周圍礦體和圍巖由于變形能的釋放而產(chǎn)生的以突變、急劇、猛烈的破壞為特征的動力現(xiàn)象。簡單的說,微震就是煤(巖)的突然破壞現(xiàn)象。
礦井微震和沖擊礦壓是礦山開采中發(fā)生的煤(巖)動力現(xiàn)象之一,這種動力災害通常是在煤(巖)力學系統(tǒng)達到強度極限時,聚積在煤(巖)體中的彈性能量以突然、急劇、猛烈的形式釋放,在井巷發(fā)生爆炸性事故,造成煤(巖)體振動和破壞,動力將煤(巖)拋向井巷,同時發(fā)生強烈聲響,造成支架與設備、井巷的破壞以及人員的傷亡等。沖擊礦壓還可能引發(fā)其他礦井災害,尤其是瓦斯、煤塵爆炸、火災以及水災,干擾通風系統(tǒng),強烈的沖擊礦壓還會造成地面建筑物的破壞和倒塌等。
1.1.2影響礦井微震的主要因素及礦井微震的顯現(xiàn)特征
礦井微震發(fā)生的原因是多方面的, 但從總的來說可以分為三類, 即自然的、技術(shù)的和組織管理方面的。
影響礦井微震發(fā)生的因素主要有兩大方面:一是礦山地質(zhì)因素,二是開采技術(shù)條件。
礦山地質(zhì)因素主要是:開采深度越大,煤體的應力越高,在開挖空間周圍煤體內(nèi)應力集中系數(shù)越大,煤體變形和積聚的彈性潛能也越大;頂?shù)装鍘r層比較堅硬,煤層具有脆性,易形成較大的集中壓力和積聚較多的彈性能;其次由于地質(zhì)構(gòu)造的存在,破壞了頂板完整性,使頂板壓力在構(gòu)造處重新分布形成構(gòu)造應力集中,特別是在斷層帶附近更容易發(fā)生沖擊礦壓。
地質(zhì)構(gòu)造因素,在地質(zhì)構(gòu)造帶中一般由地殼運動的殘余應力形成構(gòu)造應力場。在煤礦中常有斷層、褶曲和局部異常(如底凸起、頂板下陷、煤層分岔、變薄和變厚等構(gòu)造帶),礦井微震就常常發(fā)生在這些構(gòu)造應力集中的區(qū)域,嚴重時導致礦井沖擊礦壓。
開采技術(shù)條件可以促使礦井微震的發(fā)生,它主要體現(xiàn)在兩個方面,一是人為地形形成應力集中,增大發(fā)生礦井微震的危險性;二是改變應力狀態(tài)和產(chǎn)生震動,可以引發(fā)礦井微震甚至誘發(fā)沖擊礦壓的發(fā)生。具體表現(xiàn)如下:
(1)不同采煤方法的巷道布置及頂板管理方法不同,所產(chǎn)生的礦山壓力分布規(guī)律也不相同,一般短壁較長壁開采易發(fā)生礦井微震。
(2)煤柱是發(fā)生應力集中的地點。孤島形和半島形煤柱可能受幾個方向集中應力的疊加作用,形成很大的應力集中,因而在煤柱附近易形成震動影響。另外,煤柱上的集中應力不僅對本煤層產(chǎn)生影響,而且向下傳遞對下部煤層形成沖擊條件。
(3)采掘順序?qū)π纬傻V山壓力的大小和分布有很大關(guān)系。巷道和回采工作面相向推進以及在回采工作面或煤柱中的支承壓力帶內(nèi)掘進巷道,都會使集中應力疊加,從而導致礦井微震的發(fā)生。另外在采空區(qū)附近掘進巷道時,未壓實的采空區(qū)會對掘進巷道產(chǎn)生動力沖擊作用,誘發(fā)沖擊礦壓。
(4)在放炮、打鉆或采掘工作時能局部改變煤體的應力狀態(tài),一方面使煤層中應力迅速重新分布而增加煤體應力;另一方面能迅速解除煤層邊緣側(cè)向約束阻力改變煤體的應力狀態(tài),由三向壓縮變?yōu)槎驂嚎s,使其抗壓強度下降,導致迅速破壞。因此這些活動具有誘發(fā)礦井微震甚至導致沖擊礦壓的發(fā)生。
1.1.3微震與沖擊地壓的關(guān)系
礦山微震與沖擊現(xiàn)象,屬于礦體—圍巖系統(tǒng)在其力學平衡狀態(tài)被破壞并且釋放出大于消耗能量的瞬間震動。每次能量突然釋放均伴隨著應力平衡的破壞,從物理破壞點(震源)向外傳播地震波,由于礦震與沖擊地壓的破壞機制不同,因此儀器所記錄和測試得參數(shù)也不同。但是,它們同是能量釋放,因此礦體—圍巖系統(tǒng)能量釋放存在一定的內(nèi)在關(guān)系。
倘若在某一采礦區(qū)出現(xiàn)微震現(xiàn)象,則只象征著有潛在的沖擊地壓危險,它存在著較大的隨機性和復雜性。 只有當巷道或采場造成一定后果或是明顯破壞后,才被認為是沖擊地壓。沖擊地壓的發(fā)生從內(nèi)因上取決于潛在的能量大小,從外因上取決于震源方位、多維狀態(tài)、至開采線的距離和誘發(fā)因素等。
彈性能的突然釋放位置,可能出現(xiàn)在相對于回采線的不同部位。由于震源所在地點或部位不同,即使所觀測記錄到的能量相近,對工作面媒體—圍巖系統(tǒng)能量變化所產(chǎn)生的影響也不同。搞清此環(huán)節(jié)對判斷沖擊地壓危險程度具有十分重要的意義。當然,在提高定位精度的同時,還必須加強地聲與煤粉鉆孔的綜合檢測,才能正確地判斷沖擊地壓危險。
1.1.4國內(nèi)外微震及沖擊礦壓概況
1、國內(nèi)沖擊礦壓歷史及現(xiàn)狀
我國最早記錄的沖擊礦壓現(xiàn)象于1933年發(fā)生在撫順勝利煤礦,當時的開采深度為200米左右。從1949年以來,已發(fā)生破壞性沖擊礦壓4000次,震級0.5~3.8級,造成大量巷道破壞和慘重的人員傷亡。近年來,我國一些金屬礦山、水電與鐵路隧道工程也出現(xiàn)了巖爆現(xiàn)象。
我國煤礦發(fā)生沖擊礦壓有如下特征:
(1)突然性。沖擊礦壓發(fā)生前沒有明顯的征兆, 突然、猛烈。
(2)多樣性。煤層沖擊、頂板沖擊、底板沖擊等兩三種沖擊的組合。
(3)破壞性。片幫和煤炭拋出,頂板突然下沉、底鼓、破壞巷道支護,造成人員傷亡等。
(4)在各種采礦和地質(zhì)條件下均發(fā)生過沖擊礦壓。
然而具體分析起來,我國沖擊礦壓發(fā)生的條件極為復雜。從自然地質(zhì)條件來看,除褐煤以外的各煤種都記錄到了沖擊現(xiàn)象,采深從200~800米,地質(zhì)構(gòu)造從極簡單至極復雜,煤層從薄到特厚,傾角從水平到急傾斜,頂板包括砂巖、灰?guī)r、油母頁巖都發(fā)生過;從生產(chǎn)技術(shù)條件看,水采、水砂充填、綜采、炮采、機采、手采等各種工藝,長壁、短壁、巷柱、傾斜分層、水平分層、倒臺階、房柱式等各種方法都出現(xiàn)了沖擊現(xiàn)象。
1949年以前我國發(fā)生沖擊礦壓的礦井只有1~2個,50年代增加為7個,60年代為12個,70年代為22個,到21世紀初已達到50多個。而隨著開采深度的增加、開采范圍的擴大,今年來雖然采取了不少措施,但全國礦井數(shù)和總的沖擊數(shù)并未減少??梢姡覈鴽_擊礦壓的防治工作任務甚為艱巨,具有現(xiàn)實的迫切性和長遠的重大意義。
2、國外沖擊礦壓概況
沖擊礦壓是世界采礦業(yè)面臨的共同問題。1738年英國在世界上首先報道了沖擊礦壓現(xiàn)象。之后,前蘇聯(lián)、南非、德國、波蘭、美國、加拿大、日本、法國、印度、捷克、匈牙利、保加利亞、奧地利、新西蘭和安哥拉等都記錄了沖擊礦壓。目前,有包括我國在內(nèi)的20多個國家和地區(qū)都有沖擊礦壓,這一事實表明,世界上幾乎所有采礦國家都不同程度地受到?jīng)_擊礦壓的威脅。
因此應準確、有效的預測沖擊礦壓及其危害性,為采取相應防治措施提供依據(jù),從根本上消除或緩解沖擊礦壓的危害是非常重要的
1.2微震檢測系統(tǒng)
礦井微震與沖擊地壓是礦山的嚴重自然災害,開展有關(guān)礦震與沖擊的監(jiān)視和防治,是保證礦山安全生產(chǎn)的首要任務。隨著礦山對動力災害的快速反應要求的提高,微震監(jiān)測系統(tǒng)對有效波形的識別被提上日程,但目前仍然沒有成熟的解決方案,這直接影響著微震監(jiān)測系統(tǒng)的識別效率和定位精度。在礦山現(xiàn)場具體變現(xiàn)為:微震監(jiān)測系統(tǒng)無法自動識別記錄有效事件,僅依靠技術(shù)人員人工處理,效率較低;礦山微震波形復雜,干擾因素多,采用人工肉眼識別方式,經(jīng)常出現(xiàn)誤處理、漏處理、處理不及時等情況。張小樓現(xiàn)在采掘9號煤層,已進入深部開采加上地質(zhì)構(gòu)造復雜,導致采掘震動明顯,震動發(fā)生頻率高,釋放的能量大,因此張小樓生產(chǎn)時采用SOS微震監(jiān)測系統(tǒng)進行實時微震監(jiān)測和預防,避免沖擊礦壓的發(fā)生。
1.2.1系統(tǒng)結(jié)構(gòu)
SOS微震監(jiān)測系統(tǒng)主要由井下、井上硬件以及處理軟件等3大部分組成,于井下、井上兩個空間相互配合形成一個完整的系統(tǒng)進行工作。
SOS微震監(jiān)測系統(tǒng)結(jié)構(gòu)如圖1-1所示。
圖1-1 系統(tǒng)機構(gòu)圖
1.2.2 微震監(jiān)測系統(tǒng)的基本原理
巖石在應力作用下發(fā)生破壞,并產(chǎn)生微震和聲波。在采動區(qū)頂板和底板內(nèi)布置多組檢波器并實時采集微震數(shù)據(jù),經(jīng)過數(shù)據(jù)處理后,采用震動定位原理,可確定破裂發(fā)生的位置,并顯示在三維空間上與傳統(tǒng)技術(shù)相比,微震定位監(jiān)測具有遠距離、動態(tài)、三維、實時監(jiān)測的特點,還可以根據(jù)震源情況進一步分析破裂尺度和性質(zhì)。這種技術(shù)是在近幾年來計算機和采集技術(shù)快速發(fā)展的基礎(chǔ)上產(chǎn)生的,它為研究覆巖空間破裂形態(tài)和采動應力場分布提供了新的手段。
DL M-SO采集站與DL M2001檢波測量探頭配合工作共同實現(xiàn)對微震信號的監(jiān)測、傳輸和采集。在信號傳輸過程中,主要電纜噪音可通過有可控開關(guān)的50Hz帶通濾波器消除。在采集站內(nèi),本質(zhì)安全型信號和非本質(zhì)安全型信號隔離,通過運算放大器和2個傳輸器將電流調(diào)制信號準確復制,并轉(zhuǎn)換為相應的電壓信號。檢波電路中的各電壓信號進一步傳輸?shù)綖V波器中進行濾波處理,處理后信號的幅頻響應便可確定,經(jīng)過輸出放大電路實現(xiàn)1~10倍的信號放大處理,最后輸出至AS-1 Seisgram信號記錄儀,對微震信號進行記錄和保存。
1.2.3 微震SOS系統(tǒng)震源定位方法
SOS微震監(jiān)測系統(tǒng)采用縱波首次進入時間法進行定位,原理是利用檢波測量探頭接收到的直達P波起始點的時間差,在特定波速場條件下進行三維定位,以判定震源點,同時利用震相持續(xù)時間計算震動釋放能量。根據(jù)震源點定位結(jié)果對震動頻繁的危險區(qū)域進行劃定,以便及時采取解危措施。
假設煤巖體為均質(zhì)、各向同性介質(zhì),即P波在各個傳播方向上速度保持不變,從震源傳播到測站的最短時間可由下式描述:
(1) 式中:x0、y0和z0——震源坐標,m;
xi、yi和zi——第i個觀測站的坐標,m;
t0——為震源發(fā)震時間,s;
ti——P波到達第i個觀測站的時間,s;
v(x0,y0,z0)——P波在介質(zhì)中的傳播速度,m/s。
式(1)中實際上包含了4個方程,聯(lián)立后,可以求解出破裂點的坐標( x0 , y0 , z0 )和發(fā)生破裂的時間 t0 。
在實際監(jiān)測中,同時接收到破裂波的檢波器數(shù)量一般要多于4個 ,因此 ,可以按照一定的規(guī)則進行“四 - 四組合,最后求出平均值。這種算法不僅提高了定位精度,而且能夠展示出大致的破裂面范圍。
1.2.4 微震監(jiān)測信號時頻分析
時頻分析就是對信號在時間域和頻率域同時進行局部化分析。采用時頻分析技術(shù)分析微震信號的功率譜和幅頻特性,以便從頻譜特性進行微震信號辨識,從而為預測預報礦井沖擊礦壓等動力災害提供一條新的線索。
頻譜分析只選取靠近震源的測站波形,通過Matlab運用傅里葉頻譜分析和快速傅里葉時頻分析理論分析不同能量級別下的波形特征和頻譜特征。分析結(jié)果見表1-1。
表1-1 不同能量級別下微震信號比較
能量級別
持續(xù)時間 / ms
衰減
振幅 /10-4 m·s-1
主頻 /Hz
頻率分布 /Hz
接收測站
≥104
>1000
慢
2~6
<10
0~100
>10
≥103
400~800
較快
0.5~5
40~140
0~200
6~10
≥102
100~400
較快
0.5~1
40~200
0~250
5~7
<102
<400
快
<1
非常離散
0~250
<6
張小樓煤礦建立的SOS微震監(jiān)測系統(tǒng),可實現(xiàn)對礦井包括沖擊礦壓在內(nèi)的礦震信號進行遠距離(最大10k m)、實時、動態(tài)、自動監(jiān)測,給出沖擊礦壓等礦震信號的完全波形。監(jiān)測系統(tǒng)自運行以來對拾取事件波形的分析與處理結(jié)果表明,SOS微震監(jiān)測系統(tǒng)監(jiān)測質(zhì)量較好,能夠?qū)δ芰浚?6 J的礦震準確定位和能量計算,對增加煤礦開采量和保證煤礦生產(chǎn)安全等具有重要使用價值。不同能量級別,微震信號所對應的波形形態(tài)和頻譜存在著不同的特征??傮w上高能量礦震信號接收臺站多,震幅大,頻率低,頻率較為集中,持續(xù)時間長,衰減較慢;低能量礦震信號接收臺站少,震幅偏低,頻率高,頻率離散,持續(xù)時間短,衰減較快。
2 張小樓概況
2.1礦井概況
龐莊煤礦張小樓井位于徐州市西北銅山縣柳新鎮(zhèn)和劉集鎮(zhèn)境內(nèi),距徐州市區(qū)13km。南部(淺部)以F1斷層與龐莊井田為界,北部(深部)至京福高速公路保護煤柱線;東部以西1、西2和西3三個坐標點的連線及其延長線與柳新井田為界【蘇煤司基(87)第252號文】,西部以點連線與夾河井田深部為鄰【蘇煤司基(84)第579號文】。整個井田東西長約4.80km、南北寬約3.53km,井田面積16.94km2。開采深度為-90m~-1300m。
龐莊煤礦張小樓井于1973年建成投產(chǎn),礦井原設計生產(chǎn)能力45萬t/a。1989年由徐州礦務局設計處對其進行改擴建初步設計,設計生產(chǎn)能力為105萬t/a。2005年3月改擴建完成,并于2005年4月通過了江蘇煤礦安全監(jiān)察局的“礦井改擴建安全設施竣工驗收”。2006年通過江蘇省經(jīng)濟貿(mào)易委員會組織的竣工驗收,并于當年核定礦井生產(chǎn)能力為120萬t /a。
張小樓井采用立井多水平開拓,新主井落底-1025m水平,直徑為5.7m;新副井落底-1025m水平,直徑為7.0m;風井落底-400m,直徑為5.0m。采用中央并列機械抽出式通風方法。張小樓井現(xiàn)在生產(chǎn)水平為-1025m水平,-1025m水平劃分為4個采區(qū),即西一上、下山采區(qū)和西二上、下山采區(qū)。
目前,張小樓井基礎(chǔ)儲量為9861.1萬t(-1300m水平以上),設計可采儲量為6601.1萬t??刹擅簩幼陨隙聻椋?、2、7、9。各煤層特征見表2-1。
表2-1 龐莊煤礦張小樓井可采煤層情況一覽表
煤層號
穿過
點數(shù)
可采
點數(shù)
不可采
點數(shù)
缺失
點數(shù)
兩極厚度
平均值(m)
可采
指數(shù)
變異
系數(shù)
煤層穩(wěn)
定程度
1
17
16
0
1
0~2.26
1.24
0.94
41%
不穩(wěn)定
2
17
16
0
1
0.91~2.46
1.66
1.00
33%
較穩(wěn)定
7
17
16
0
1
0~2.55
1.79
0.94
27%
較穩(wěn)定
9
14
14
0
0
0~2.62
1.47
1.00
13%
較穩(wěn)定
1煤和2煤已經(jīng)開采結(jié)束,現(xiàn)在主要是在對7煤和9煤進行開采,在開采的過程中由于設備的安裝日期的限制,在對9煤監(jiān)測的時間和數(shù)據(jù)相對來說是比較準確的,主要是對95206面進行分析。
1)7煤層
7煤層為本礦區(qū)主采煤層之一。厚度0~2.55m,平均厚度1.79m,局部有0.2m左右的夾矸1層,夾矸巖性主要為頁巖,偶爾也可見砂頁巖;煤層傾角0~25°;7煤上距分界砂巖43.96~60.46m,平均間距52.27m左右;7煤下距9煤間距24.17~40.85m,平均間距29.33m;煤層可采性指數(shù)Km=0.94,變異系數(shù)γ=27%。直接頂為灰白色砂質(zhì)頁巖或中~細粒砂巖,厚度0.20~29.77m,平均厚
5.81m老頂多為砂質(zhì)頁巖或中~細粒砂巖;直接底為深灰色砂質(zhì)頁巖,偶見中~細粒砂巖或粉砂巖,厚度0.55~25.23m,平均厚度7.58m。綜合評價7煤為較穩(wěn)定的中厚煤層。
2)9煤層
9煤層為本礦區(qū)主采煤層之一。9煤上距7煤間距24.17~40.85m,平均間距29.33m左右;9煤下距太原組一灰間距24.1~28.9m,平均間距25.3m左右;煤層厚度0~2.62m,平均厚度1.47m;煤層傾角0~25°;煤層可采性指數(shù)Km=1,變異系數(shù)γ=13%。直接頂板多為灰白色細粒砂巖或砂頁巖互層,厚度6.43~33.78m,局部有0.3~0.6m厚的頁巖偽頂;直接底板多為頁巖或砂頁巖,偶見粉砂巖,厚度0.59~6.08m,1.49m,其下為9-2煤,直接底較厚的地方9煤與9-2煤合為一層。綜合評價9煤為較穩(wěn)定的中厚煤層。
張小樓井田位于徐州煤田九里山向斜中段張小樓背斜北翼。該背斜僅在13-1~15線的露頭部位有所顯露,其軸部為奧陶系中統(tǒng)地層。F1號逆斷層基本沿背斜軸部切割,因此形成一個不完整背斜,南翼僅殘存很少山西組、太原組煤系地層。北翼保存相對較完整,但也被幾條大中型斷層縱橫切割,略顯破碎。
該井田整體呈一走向北東、傾向北西上陡下緩的鏟式單斜構(gòu)造,淺部地層傾角一般在24°~40°、深部地層傾角5°~15°。13-1~16-1勘探線間淺部露頭部位的煤層分別被落差20.0m以上的F18、F15、F14、F0、K3、K1、K6等斷層切割,破壞了淺部單斜構(gòu)造形態(tài)。深部則表現(xiàn)為兩個寬緩的向斜和兩個寬緩的背斜,如圖2-1所示。
圖2-1張小樓井田構(gòu)造綱要圖
2.2 沖擊礦壓顯現(xiàn)
徐州礦務集團的礦井大都進入深部采區(qū),采深達到千米以上,沖擊礦壓動力現(xiàn)象十分嚴重,其中龐莊煤礦張小樓井等是沖擊礦壓顯現(xiàn)比較典型的礦井。龐莊煤礦張小樓井9煤煤層采深>1000 m,局部采深接近1200m,屬于典型的深部開采煤層。深部開采所遇到的沖擊礦壓危害程度遠比淺部開采嚴重的多,同時沖擊礦壓防治難度也隨著采深的增加而大幅度提升。根據(jù)沖擊傾向性鑒定結(jié)果,龐莊礦張小樓井9煤煤層的沖擊能指數(shù)=5.05,彈性能指數(shù)=10.28,動態(tài)破壞時間=41ms,為典型的強沖擊傾向煤層。加之張小樓井多煤層開采,上部煤層開采時留下的殘采區(qū)、煤柱是構(gòu)成下部煤層開采應力集中的一個主要原因。
龐莊煤礦張小樓井在長期與沖擊礦壓的斗爭中,從工作面整體布局至局部解危措施的應用等,都積累了豐富的預防和治理經(jīng)驗,取得了相當成效,并且已經(jīng)建立了即時與局部預測的電磁輻射法和鉆屑監(jiān)測方法。但由于沖擊礦壓目前仍是世界性難題,其發(fā)生與否受眾多因素影響和制約,特別是千變?nèi)f化的煤層具體開采技術(shù)條件,分析和治理起來難度仍相當大,且隨著張小樓井主采工作面向深部延伸,沖擊礦壓的威脅更加嚴重。故進一步分析現(xiàn)場礦震數(shù)據(jù),具有重要的實踐指導意義。
張小樓煤礦自發(fā)生第1次沖擊礦壓后,隨著開采深度的逐年增加,礦井深部壓力顯現(xiàn)日趨明顯,發(fā)生多次沖擊礦壓現(xiàn)象,并且沖擊礦壓發(fā)生次數(shù)和強度都有明顯增加趨勢。張小樓煤礦與中國礦業(yè)大學合作,安裝了波蘭礦山研究總院采礦地震研究所設計制造的SOS微震監(jiān)測系統(tǒng),對井下微震活動進行實時監(jiān)測。
2.3“破裂 -沖擊地壓”關(guān)系評價原理
巖層破裂發(fā)生在應力差大的區(qū)域,因此,巖層破裂區(qū)總是與高應力差區(qū)域相重合,并與高應力場區(qū)域相接近。由此可見,只要測到了巖層破裂區(qū)域,即可找到高應力場區(qū)域和高應力差區(qū)域,沖擊地壓的發(fā)生與這兩個區(qū)域密切相關(guān)。 圖 2-2 是巖石破裂與應力的關(guān)系示意圖和該關(guān)系在長壁工作面的位置示意圖.圖中,A 為應力高峰點與破裂高發(fā)點之間的距離,B 為煤壁到破裂高發(fā)點之間的距離。
圖2-2 巖石“應力-應變”關(guān)系及其與采場附近巖層“破裂-高應力”的對應關(guān)系
3微震規(guī)律綜述
3.1 95206工作面附近及下山區(qū)域微震頻次統(tǒng)計分析
本次分析對象選用95206工作面是因為本工作面基本上是從微震監(jiān)測系統(tǒng)開始運行到止采一直進行監(jiān)測,監(jiān)測數(shù)據(jù)具有連貫性,便于進行分析研究,易于得出相應的礦震活動規(guī)律。同時,95206工作面在2011年11月27日9點20分14秒和9點20分57秒,張小樓井微震監(jiān)測系統(tǒng)監(jiān)測到95206皮帶機道三角門處(能量:1.13*105J)和-1025膠帶石門三角門處(能量:3.44*105J)發(fā)生兩起強礦震,其擾動誘發(fā)-1166回風石門15m范圍內(nèi)底板底鼓0.5m左右。故以95206工作面為分析對象,能較全面反映本階段礦震活動的規(guī)律性。95206工作面采掘工程平面圖見圖3-1。有圖可看出95206工作面回采過程中不僅需過兩個斷層還要經(jīng)過7煤的兩個停采線,且95206工作面主體位于向斜左翼。
自95206工作面回采以來,工作面附近已出現(xiàn)多起強礦震活動事件。而事實上,在這些大的震動事件發(fā)生前,巖體已經(jīng)出現(xiàn)了大量的礦震活動。這些礦震活動所發(fā)生的頻次及能量的變化與沖擊礦壓的發(fā)生有非常明顯的關(guān)系。
本文取自礦震數(shù)據(jù)庫2011年5月01日至2012年3月12日的數(shù)據(jù)。95206工作面監(jiān)測區(qū)域共檢測到礦震8724次,其中最大能量為8.39E+05J,最小能量不到100.0J,震動能量分級統(tǒng)計見表3-1。由于95206的回采影響下山區(qū)域礦震活躍,在下山區(qū)檢測域內(nèi)共檢測到礦震22077,其中最大能量為5.33E+05J,最小能量不到100.0J,震動能量分級統(tǒng)計見表3-2。
表 31 95206工作面附近礦震統(tǒng)計表
能量分級(J)
震動次數(shù)
所占比例/%
小于102
3138
35.97
102~103
3086
35.33
103~104
2106
24.14
104~105
363
4.16
105~106
35
0.40
表 32 下山區(qū)域礦震統(tǒng)計表
能量分級(J)
震動次數(shù)
所占比例/%
小于102
7227
32.74
102~103
8374
37.90
103~104
5609
25.41
104~105
827
3.75
105~106
44
0.20
由表3-1,表3-2可看出,95206工作面回采過程中無論是工作面附近還是下山區(qū)域震動能量大于104J的礦震占總礦震的比例很小,分別是4.56%和3.95%。說明在工作面回采過程中無論是工作面附近還是下山區(qū)域礦震活動比較緩和,工作面覆巖運動較為規(guī)律,不甚劇烈,工作面回采過程中應該加強靜載卸壓措施。
圖 31 95206工作面平面圖
圖32 95206工作面附近礦震頻次按月統(tǒng)計圖
圖33下山附近礦震頻次按月統(tǒng)計圖
由圖3-2可看出隨著95206工作面的推進每月發(fā)生礦震的頻次總體上呈增加狀態(tài),折線在2012年3月突然下降是因為95206工作面在此時間段內(nèi)停采造成的。
由圖3-3可看出隨著95206工作面的推進下山每月發(fā)生礦震的頻次在11月份之前頻次相差不大,穩(wěn)定在1800次左右,但折線在2011年11月突然礦震頻次發(fā)生跳躍穩(wěn)定在2500次左右,2012年3月頻次下降是因為95206工作面在此時間段內(nèi)停采造成的。
3.2 95206工作面附近及下山區(qū)域微震時序分析
在這里,主要分析礦震能量與頻次演化規(guī)律。95206工作面自2009-6-27回采至今(2011-5-1~2012-03-12),已經(jīng)發(fā)生了多次強礦震,而事實上,在這些大的震動事件發(fā)生前,巖體已經(jīng)出現(xiàn)了大量的微震活動。這些微震活動所發(fā)生的頻次及能量的變化與強礦震的發(fā)生有非常明顯的關(guān)系。下面具體分析2011-5-1~2012-03-12期間每月工作面及下山附近微震事件震動頻次、能量時間序列變化情況,如圖3-4~圖3-23所示。
圖34工作面(2011/5/1~2011/5/31)微震事件震動頻次、能量時間序列圖
圖 35工作面(2011/6/1~2011/6/29)微震事件震動頻次、能量時間序列圖
圖36工作面(2011/7/1~2011/7/31)微震事件震動頻次、能量時間序列圖
圖37工作面(2011/8/1~2011/8/31)微震事件震動頻次、能量時間序列圖
圖 3-8工作面(2011/9/1~2011/9/29)微震事件震動頻次、能量時間序列圖
圖 39工作面(2011/10/1~2011/10/31)微震事件震動頻次、能量時間序列圖
圖 310工作面(2011/11/1~2011/11/29)微震事件震動頻次、能量時間序列圖
圖 3-11工作面(2011/12/1~2011/12/31)微震事件震動頻次、能量時間序列圖 圖 312工作面(2012/1/1~2012/1/31)微震事件震動頻次、能量時間序列圖
圖 313工作面(2012/2/1~2012/3/12)微震事件震動頻次、能量時間序列圖
圖 314下山附近(2011/5/1~2011/5/31)微震事件震動頻次、能量時間序列圖
圖 315下山附近(2011/6/1~2011/6/29)微震事件震動頻次、能量時間序列圖
圖 316下山附近(2011/7/1~2011/7/31)微震事件震動頻次、能量時間序列圖
圖 317下山附近(2011/8/1~2011/8/31)微震事件震動頻次、能量時間序列圖
圖 318下山附近(2011/9/1~2011/9/29)微震事件震動頻次、能量時間序列圖
圖 319下山附近(2011/10/1~2011/10/31)微震事件震動頻次、能量時間序列圖
圖 320下山附近(2011/11/1~2011/11/29)微震事件震動頻次、能量時間序列圖
圖 321下山附近(2011/12/1~2011/12/31)微震事件震動頻次、能量時間序圖
圖 322下山附近(2012/1/1~2012/1/31)微震事件震動頻次、能量時間序列圖
圖 323下山附近(2012/2/1~2012/3/12)微震事件震動頻次、能量時間序列圖
通過觀測某個巷道和開采區(qū)域中由微震監(jiān)測系統(tǒng)確定的參數(shù)在到目前為止所發(fā)生的變化,并確定由此引起的沖擊礦壓危險相對于目前為止的沖擊危險的上升或下降的程度。積極找出強礦震發(fā)生的前兆規(guī)律。
根據(jù)以上對張小樓煤礦95206工作面沖擊危險狀況的分析,基于微震監(jiān)測系統(tǒng)確定了單日微震累計能量、震動頻次兩個參量進行危險程度的分析和評價。根據(jù)以上震源時空演化規(guī)律的分析,確定以下特征為強礦震和強沖擊發(fā)生的前兆規(guī)律:
(1)日震動頻次連續(xù)處于高位或在高位的基礎(chǔ)上持續(xù)上升,而日釋放能量較長時間維持低水平或在低位的基礎(chǔ)上下降再或者上升不大時,說明強礦壓即將到來。
(2)在活躍期后,若出現(xiàn)以日震動能量和日震動頻次雙下降為特征的沉寂區(qū)間,則說明下一步要釋放大量能量。
(3)在發(fā)生較強礦壓顯現(xiàn)之后,若日震動頻次降低,而日震動能量不但沒有降低反而走高;或者震動頻次升高而能量降低,則預示強沖擊的到來。只有在大能量釋放后能量與頻次都下降才安全。
(4)震動次數(shù)高表明巖體破裂活動頻繁,是應力集中下巖體失穩(wěn)的征兆,之后出現(xiàn)的沉寂現(xiàn)象則是預示巖層中強礦震能量蓄積的征兆,應格外注意。
(5)強礦壓顯現(xiàn)發(fā)生前,礦震次數(shù)和礦震能量迅速增加,維持在較高水平,直到發(fā)生大的強礦壓顯現(xiàn)后,礦震次數(shù)和礦震能量明顯降低;
(6)巖體中能量的釋放總是處于一種波動狀態(tài),對應積聚和能量釋放的頻繁轉(zhuǎn)換中,而在具有沖擊危險的情況時,這種波動狀態(tài)開始加劇,震源總能量變化趨勢首先經(jīng)歷一個震動活躍期,之后出現(xiàn)較明顯的下降階段,當震動活躍期中出現(xiàn)震動頻次較高時,開始具有沖擊危險性,而在下降階段再回升或下降階段中出現(xiàn)比較長時間的沉寂現(xiàn)象后,并且震動頻次維持在較高水平時,此時具有強沖擊危險性。
(7)微震活動與采掘活動有密切的關(guān)系,當出現(xiàn)較大的微震活動時,都應從時間序列分析與采掘的關(guān)系,逐次遠離回采工作面時危險性較小,逐次向回采工作面靠近時,應加強防范。
3.3 礦震空間演化規(guī)律
在這里,主要具體分析95206工作面每月礦震震源的空間分布情況以及工作面下山附近震動平面圖
圖 324 95206全礦井工作面震源分布圖
( 103 J-104 J 104J-105 J 105J-106J)
圖 325 工作面附近威震分布平面圖(圓圈代表能量>104J)
從震源空間的月分布和平面分布演化趨勢可見,震源集中區(qū)域隨著工作面的推進,逐步往前移動;強度較高的震動并不是突然的出現(xiàn),而是有一個向上的發(fā)展過程;采空區(qū)底板中出現(xiàn)的震動隨開采進行也逐漸增多;工作面上方發(fā)生的震動多在工作面后方,且分布上呈現(xiàn)一條斜線帶,這與頂板分層垮落是一致的;工作面超前應力集中區(qū)在開采初期震動較少,能量也較小,隨著開采范圍的擴大,前方也出現(xiàn)較多震動,并出現(xiàn)幾次能量較高的強礦震事件,表明煤巖層在超前支承壓力作用下已經(jīng)開始出現(xiàn)大范圍斷裂或破壞。
從整個回采過程中看,礦震大多分布在褶曲一翼、斷層附近。
圖 326下山附近微震分布平面圖(圓圈代表能量>104J )
如圖3-26所示,95206工作面回采過程中對下山巷道影響很大,尤其95206工作面下山附近,微震活動劇烈,高能量的微震發(fā)生頻率高,對于沖擊礦壓的預測有重要意義。
4 工作面及下山附近危險性分析
4.1褶曲影響
研究表明,如圖4-1所示,一般情況下,對于回采工作 面來說,在褶曲的各個部位,出現(xiàn)的危險性是不一樣的, 褶曲向斜部分,其應力垂直為壓力,水平為拉力,最容易 出現(xiàn)冒頂和沖擊礦壓;褶曲兩翼,這部分的應力,垂直和 水平均是壓力,最容易出現(xiàn)沖擊礦壓;褶曲背斜,其應力 狀態(tài)為垂直拉力,水平拉力,這部分也是最大礦山壓力區(qū) 域。數(shù)值模擬結(jié)果 也表明,最大水平應力是壓應力,主 要集中在褶曲向斜、背斜內(nèi)弧的波谷和波峰部位。 因此,在褶曲部分開采煤層時,褶曲這種應力場初始 狀態(tài)的變化必將對巷道開挖或工作面開采引起的應力場變 化產(chǎn)生影響,發(fā)生沖擊礦壓的危險性就極大。
圖 41褶曲部分的受力狀態(tài)及危險性
4.2 斷層影響
95206工作面在推進過程中還要受到兩個斷層的影響,斷層附近煤層傾角變化大,構(gòu)造應力復雜多變,極易產(chǎn)生微震并引發(fā)沖擊礦壓。95206工作面推進到最后時,在工作面附近礦震運動尤為激烈,且能量比較集中,應對周圍巷道加強支護。并及時泄壓,一方?jīng)_擊礦壓的發(fā)生。
4.2.1 斷層圍巖聚能誘沖分析
目前國內(nèi)外學者對斷層圍巖誘沖機理及斷層區(qū)域沖擊前兆的微震活動規(guī)律做了大量研究,相關(guān)文獻分別從斷層上下盤、頂?shù)装?、弱面破碎帶及煤的力學性質(zhì)等角度揭示了區(qū)域圍巖黏滑失穩(wěn)特征、應力分布變化規(guī)律及誘沖機制,對深部巷道在高應力影響下的微震演化規(guī)律與監(jiān)測控制進行了研究。
深部煤層巷道掘進至斷層附近時,煤巖體內(nèi)部應力場的初始平衡狀態(tài)會被破壞。對于斷層各個斷塊而言,在圍巖不平衡力作用下,一旦斷層面上力的作用超過其臨界失穩(wěn)條件,每一斷塊都將具有微距離錯位滑移的可能。由于斷層上、下兩盤接觸面受力不同、接觸點的摩擦作用不同,每一斷面的滑移結(jié)果將有所差異, 微距滑移將從最先達到失穩(wěn)臨界條件的斷面開始。受圍巖作用力與自由空間約束影響,其滑移結(jié)果一方面可能導致失穩(wěn)面滑移距離增大,另一方面亦可能使得其他斷面繼續(xù)發(fā)生微距離移動,嚴重時甚至所有斷層斷塊都將具有發(fā)生微距離滑動的可能。這種滑移趨勢與不平衡狀態(tài)直接相關(guān),不平衡狀態(tài)越明顯,產(chǎn)生的初始動力就越大,相應的初始滑移加速度就愈大,聚集的彈性能量就高。一旦聚集的彈性能瞬間釋放,造成的沖擊危險就越大。實踐同時證明, 斷層附具有發(fā)生沖擊礦壓的較高可能性。
受斷層錯動移位的影響,自斷層斷面往上、下兩盤各一定距離的范圍內(nèi),將形成一個裂隙較為發(fā)育的煤巖體破裂松動區(qū) (圖 4-2), 在該部分區(qū)域內(nèi)掘進施工時,煤巖體結(jié)構(gòu)破壞較大,地應力平衡態(tài)被打破并重新分布,人為撓動造成頂煤的控制難度相對加大,一旦出現(xiàn)較大能級的微震活動,釋放的能量將會進一步助推煤巖體的破裂進程。特別是在巷道起坡位置,頂板巖體內(nèi)應力容易集中,起坡點是巷道力傳輸?shù)年P(guān)鍵破斷點。另外,巷道掘進期間受斷層影響發(fā)生煤巖體轉(zhuǎn)換繼而轉(zhuǎn)變?yōu)樯仙骄蜻M的區(qū)域,多數(shù)情況下屬于挑頂方式施工。此時,巷道由原先的煤體內(nèi)掘進轉(zhuǎn)變?yōu)槊簬r組合體內(nèi)掘進,頂板由煤體漸變?yōu)檩^堅硬的巖石,挑頂區(qū)域頂板的完整性被破壞,地應力狀態(tài)發(fā)生了改變,彈性能在該區(qū)域積聚的可能性加大, 被破壞了的巖石頂板結(jié)構(gòu)受集中應力影響而不再穩(wěn)定,斷層裂隙發(fā)育區(qū)域邊緣聚集能量并發(fā)生沖擊的概率增大。在斷層群區(qū)域進行的微震監(jiān)測結(jié)果顯示, 隨著新的巷道空間被掘出,斷層群圍巖由于受人為撓動影響易在巷道頂板區(qū)域出現(xiàn)能量大小不一的震動,直接體現(xiàn)在區(qū)域內(nèi)微震活動烈度方面,這與挑頂區(qū)域頂板應力集中有關(guān)。這種類型的微震活動,易將過斷層之前巷道區(qū)段頂板上方的煤巖體震裂而發(fā)生松動冒落,在高地應力作用下,較為嚴重的礦震就有可能導致大量破碎煤巖體噴出而演變?yōu)闆_擊礦壓災害事故。
圖4-2 斷層斷面周圍的破裂松動區(qū)域
鑒于斷層區(qū)域誘發(fā)沖擊危險的較大概率,做好巷道過斷層期間的微震監(jiān)測工作極為必要,針對性地減沖解危治理對于斷層群區(qū)域沖擊礦壓危險控制大有裨益。
4.2.2 過斷層群前期微震活動分析
深部煤巖實體因高地應力的疊加集中而積聚大量彈性能量,每一次較大能量的震動活動,既是聚集在煤巖體內(nèi)彈性能量的釋放過程,又是對震源周圍硬煤巖松散破碎的過程,起到了能量釋放、松散巖體及轉(zhuǎn)移高地應力的作用。從巷道向斷層推進期間的微震活動分布特點來看 掘進面距離斷層較遠時, 震動位置距離斷層也較遠; 隨著巷道不斷向斷層掘進,人為掘進活動將逐漸對斷層構(gòu)造產(chǎn)生影響,微震震源分布逐漸向斷層靠攏,這與掘進面超前應力與斷層圍巖原始構(gòu)造應力相互疊加影響有關(guān)。根據(jù)巷道掘進前期的微震分布,繪制每日震動總能量與總次數(shù)的變化情況如圖 4-3所示。
圖4-3 巷道過斷層前期震動能量與次數(shù)變化曲線
從圖 4-3可看出,自12月 5日起, 隨著巷道不斷向斷層區(qū)域靠近,單日微震活動的次數(shù)變化呈現(xiàn)上升的趨勢,推斷認為這與區(qū)域內(nèi)掘進面超前應力與斷層構(gòu)造應力初次疊加影響有關(guān);之后震動次數(shù)有明顯下降的趨勢,特別是自 12月 11日起 震動總次數(shù)下降趨勢和幅度明顯。在這段時間內(nèi),單日震動總能量變化逐漸不穩(wěn)定,呈現(xiàn)忽大忽小的變動態(tài)勢, 波動幅度差距增大。將較小震動能量與較大震動能量分別單獨觀察比較發(fā)現(xiàn),低能量呈現(xiàn)逐漸下降的趨勢,而高能量呈現(xiàn)逐漸攀升的趨勢。相關(guān)文獻[ 16]亦闡述了沖擊前兆微震總能量有上升的趨勢。特別是 12月 17日于巷道掘進面左后方發(fā)生的一次較大能量的礦震,是在單日微震總次數(shù)與總能量都下降的前提下發(fā)生的, 該次微震活動對巷道圍巖結(jié)構(gòu)及應力平衡擾動很大,礦壓顯現(xiàn)尤為強烈。從微震能量與次數(shù)的變動趨勢來看,掘進工作面愈靠近斷層,微震變化規(guī)律愈明顯,主要呈現(xiàn) 2大特點:
1)微震能量在某一特定水平狀態(tài)波動,但波動變化不穩(wěn)定性增強, 能量小時漸小,而能量大時更大,最大與最小能量幅值差距會增加;
2) 強震活動發(fā)生前,微震活動在頻次與能級方面均呈下降趨勢,強震活動發(fā)生后,微震通常再次轉(zhuǎn)變?yōu)榈湍芰空饎踊顒?弱震活動有為強震爆發(fā)“蓄能”的趨勢。
所研究區(qū)域由于煤層埋藏較深,煤質(zhì)較硬,煤體具有強沖擊傾向性。根據(jù)掘進過程中微震活動特點綜合推斷,斷層區(qū)域沖擊傾向性理論上較強,預測在掘進工作面及斷層區(qū)域圍巖內(nèi)有高能量潛伏,具備發(fā)生沖擊礦壓危險的條件和可能性。
4.2.3 解危后微震活動變化規(guī)律
針對斷層區(qū)域煤巖體微震顯現(xiàn)強烈至有可能發(fā)生沖擊礦壓的潛在危險性, 及時采取鉆屑法監(jiān)測配合鉆孔卸壓爆破技術(shù)與大直徑鉆孔卸壓技術(shù)加以治理, 采取解危措施之后,由 SOS微震監(jiān)測系統(tǒng)對過斷層中期與后期全程實施實時監(jiān)測,獲得該段時間內(nèi)震動能量及次數(shù)變化趨勢如圖 4-4所示。
圖4-4 防沖措施實施后震動能量及變化次數(shù)
監(jiān)測結(jié)果顯示,防沖措施實施之后,斷層群周圍每日震動總次數(shù)不斷減少, 每日震動總能量逐漸降低,單次震動的能量亦趨于弱化,絕大多數(shù)微震釋放能量均保持在 103J以下,發(fā)生沖擊的可能性大幅降低,偶爾發(fā)生較大能量的礦震, 符合巷道煤巖體微震活動規(guī)律。微震源點分布變化及能量變動趨勢表明,斷層周圍聚集的地應力在人為預防措施干擾下發(fā)生轉(zhuǎn)移甚至削弱,復雜構(gòu)造區(qū)域的高地應力集中程度不再明顯,積聚的能量也相對減弱。這說明人為改變地應力的分布狀態(tài),在一定程度上可使斷層圍巖應力集中程度消弱,經(jīng)弱化后的殘余能量一般不再具有突然釋放至發(fā)生較大沖擊的可能。
掘進面通過斷層后,受掘進活動前移的影響,超前地應力也跟隨巷道掘進而轉(zhuǎn)移,斷層周圍煤巖體震動活動頻度降低,震動總能量降低,說明防沖措施的實施取得了明顯的卸壓效果,有效地抑制了沖擊礦壓發(fā)生的潛在威脅。
5 結(jié)論
(1)強烈微震活動發(fā)生前有一段弱震活動時期,為強震的發(fā)生積蓄了更多的能量。在原巖應力場受人為撓動影響明顯的區(qū)域,微震活動有較強規(guī)律性: 在一定時間內(nèi),能量在某一特定水平狀態(tài)波動,之后波動不穩(wěn)定性增強,最小能量漸小,最大能量上升快,能量幅值差距增大;強震活動發(fā)生前,微震活動在次數(shù)與能級方面都有下降趨勢,強震活動發(fā)生后通常再次轉(zhuǎn)變?yōu)榈湍芰课⒄鸹顒樱?表明弱震活動有為強震爆發(fā)“蓄能” 的趨勢。
(2)微震活動向工作面發(fā)展,并靠近煤壁特別是出現(xiàn)在近于104焦耳震動事件時又沖擊地壓危險。微震出現(xiàn)在回采線前方或工作面任何隅角部位,則沖擊地壓危險性增大。微震向遠離工作面采空區(qū)發(fā)展,無論能量大小均對工作面構(gòu)成威脅,但存在著大面積或局部跨頂?shù)目赡苄浴?
(3)礦震主要發(fā)生在工作面、采空區(qū)。這充分體現(xiàn)了工作面超前支承壓力和后支承壓力的影響程度,同時也表明了在應力集中區(qū)內(nèi)煤巖體發(fā)生破裂并釋放能量,與礦震震源的分布位置形成了很好的對應,于是,可利用微震監(jiān)測系統(tǒng)輔助鉆孔應力計判斷超前應力集中區(qū)域和破裂范圍。
(4)從平面定位結(jié)果還可看出,95206工作面回采過程中引起的震動多集中在95206運輸巷側(cè),并偏向95206工作面,這和工作面的采掘布置以及是密切相關(guān)的。這時由于運輸巷側(cè)為已經(jīng)回采完畢的95205工作面,臨空區(qū)壓力比較大,加上95206工作面超前支撐壓力的影響和區(qū)段小煤柱導致應力集中,從而覆巖活動比較活躍,震動頻次非常高。
(5)工作面從中部向工作面南部推進,礦震的強度比較大,尤其在二月份,礦震能量大部分達到了強礦震(圖中紅色大圓標志為大于105~106J的礦震),這與煤層底板起伏變化和工作面過褶曲引起應力變化相對應。工作面從中部向工作面南部推近,煤層底板起伏不平,傾角變化較大,容易造成應力集中。而且工作面過褶曲時,當?shù)竭_褶曲兩翼時,壓應力比較大。巷道內(nèi)的底板壓力也比較大,容易發(fā)生底鼓。
(6)因此,通過震源的空間分布和演化特征,可以研究震動發(fā)生的層位,從而分析覆巖的破斷形態(tài)和破斷步距,為研究采礦活動引起的覆巖活動規(guī)律打下基礎(chǔ)。
參考文獻
[1] 陸菜平,竇林名,吳興榮,等.煤巖沖擊前兆微震頻譜演變規(guī)律試驗與實證研究[J].巖石力學與工程學報,2008,07 (3);519-525.
[2]姜福興,楊淑樺,成云海,等.煤礦沖擊地壓的微震監(jiān)測研究[J],地球物理學報,2006,49,(5):1511-1516.
[3]閆憲磊,陳學華,閆憲洋.工作面過斷層期間微震規(guī)律分析[J].煤炭學報,2011,05.
[4]呂長國,竇林名,等. 煤礦SOS微震監(jiān)測系統(tǒng)建設及應用研究[J].地球物理學報,2011,05.
[5]李玉,黃梅,等.沖擊地壓發(fā)生前微震活動時空變化的分形特征[J].北京科技大學學報,1995,05.
收藏