果汁容器的成型工藝及塑料模具設(shè)計(jì)【一模一腔】【側(cè)抽芯】【說明書+CAD】
果汁容器的成型工藝及塑料模具設(shè)計(jì)【一模一腔】【側(cè)抽芯】【說明書+CAD】,一模一腔,側(cè)抽芯,說明書+CAD,果汁容器的成型工藝及塑料模具設(shè)計(jì)【一模一腔】【側(cè)抽芯】【說明書+CAD】,果汁,容器,成型,工藝,塑料,模具設(shè)計(jì),說明書,仿單,cad
河南機(jī)電高等??茖W(xué)校
學(xué)生畢業(yè)設(shè)計(jì)(論文)中期檢查表
學(xué)生姓名
陳雪燕
學(xué) 號
0312343
指導(dǎo)教師
楊占堯
選題情況
課題名稱
果汁容器成型工藝及塑料模具設(shè)計(jì)
難易程度
偏難
適中
偏易
工作量
較大
合理
較小
符合規(guī)范化的要求
任務(wù)書
有
有
無
開題報(bào)告
有
有
無
外文翻譯質(zhì)量
優(yōu)
良
中
差
學(xué)習(xí)態(tài)度、出勤情況
好
一般
差
工作進(jìn)度
快
按計(jì)劃進(jìn)行
慢
中期工作匯報(bào)及解答問題情況
優(yōu)
良
中
差
中期成績評定:
所在專業(yè)意見:
負(fù)責(zé)人:
年 月 日
河南機(jī)電高等??茖W(xué)校 03屆模具設(shè)計(jì)與制造專業(yè) 畢業(yè)設(shè)計(jì)說明書
河南機(jī)電高等??茖W(xué)校
材料工程系
模具設(shè)計(jì)與制造專業(yè)
畢業(yè)設(shè)計(jì)/論文
設(shè)計(jì)/論文題目:果汁容器的成型工藝
及塑料模具設(shè)計(jì)
班 級: 模具033班
姓 名: 陳雪燕
指導(dǎo)老師: 楊占堯
完成時(shí)間: 2006.05.09
畢業(yè)設(shè)計(jì)(論文)成績
畢業(yè)設(shè)計(jì)成績
指導(dǎo)老師認(rèn)定成績
小組答辯成績
答辯成績
指導(dǎo)老師簽字
答辯委員會簽字
答辯委員會主任簽字
畢業(yè)設(shè)計(jì)/論文任務(wù)書
題目:果汁容器的成型工藝
及塑料模具設(shè)計(jì)
內(nèi)容:(1)完成果汁容器零件的工藝性分析及工藝方案制定
(2)果汁容器模具裝配圖及全部零件圖的繪制
(3)完成模具主要工作零件的工藝規(guī)程編制
(4)編寫設(shè)計(jì)說明書
原始資料:
設(shè)計(jì)題目:果汁容器
材料: PC
生產(chǎn)批量:單件生產(chǎn)
插圖清單
圖1-1 產(chǎn)品圖……………………………………………………………第5頁
圖4-1 型腔圖……………………………………………………………第12頁
圖4-2 型芯圖……………………………………………………………第12頁
圖5-1 型腔圖……………………………………………………………第14頁
圖5-2 澆口圖……………………………………………………………第15頁
圖5-3 分型面一…………………………………………………………第16頁
圖5-4 分型面二…………………………………………………………第16頁
圖5-5 配合圖一…………………………………………………………第18頁
圖5-6 配合圖二…………………………………………………………第18頁
圖6-1 支撐板……………………………………………………………第20頁
表格清單
表一 塑料制件的原料分析
表二 塑料制件注塑成型工藝參數(shù)
表三 注射機(jī)的主要參數(shù)
(畢業(yè)設(shè)計(jì)/論文題目)
摘要
( 中文)
(畢業(yè)設(shè)計(jì)/論文英文題目)
Abstract
畢業(yè)設(shè)計(jì)/論文說明書目錄
緒 論 1
第1章 塑料制件的工藝分析----------------------------------------- 5
1.1塑料制件的結(jié)構(gòu)---------------------------------------------------------- 5
1.2塑料制件的原料分析------------------------------------------------- 5
1.3塑料制件注射成型工藝參數(shù)-------------------------------------------- 6 1.4塑料制件的工藝分析-------------------------------------------- 7
第2章成型制品的體積和質(zhì)量的計(jì)算-----------8
第3章成型設(shè)備的選擇--------------------------------- 9
3.1塑料的常用成型方法------------------------------------------------------------9
3.2成型設(shè)備的選擇-----------------------------------------------------------------9
第4章 模具類型及結(jié)構(gòu)形式的比較與選擇------------------ 10
4.1澆注系統(tǒng)的設(shè)計(jì)方案--------------------------------------------------------- 10
4.2型腔、型芯結(jié)構(gòu)的設(shè)計(jì)方案----------------------------------------------- 11
第5章 模具方案的確定--------------------------------------------------- 13
5.1標(biāo)準(zhǔn)模架的選擇-------------------------------------------------------------- 13
5.2選用注射機(jī)-------------------------------------------------------------------- 14
5.3澆注系統(tǒng)的設(shè)計(jì)--------------------------------------------------------------- 14
5.4分型面方案的確定-------------------------------------------------------- 15
5.5推出機(jī)構(gòu)的設(shè)計(jì)--------------------------------------------------------------- 16
5.6加熱和冷卻系統(tǒng)的設(shè)計(jì)---------------------------------------------------- 18
第6章 模具其他零件(配件)的選擇、設(shè)計(jì)以及必要的計(jì)算------------21
6.1支承板的強(qiáng)度校核------------------------------------------------------------------------------------ 21
6.2導(dǎo)向機(jī)構(gòu)的設(shè)計(jì)------------------------------------------------------------------------------------------22
6.3支承釘?shù)脑O(shè)計(jì)----------------------------------------------------------------------------------------- 23
6.4定位圈的確定-------------------------------------------------------------------------------------- 23
第7章 注射機(jī)有關(guān)工藝參數(shù)的校核---------------------------------------------------24
7.1最大注射量的校核------------------------------------------------------------------------------------ 24
7.2鎖模力的校核--------------------------------------------------------------------------------------- 24
7.3開模行程的校核----------------------------------------------------------------------------------- 25
7.4油壓頂出行程校核-------------------------------------------------------------------------------- 25
7.5模具安裝部分的校核-------------------------------------------------------------------------------- 25
第8章 設(shè)計(jì)總結(jié)和感想--------------------------------------------------------------------- 27
致謝 --------------------------------------------------------------------------28
參考文獻(xiàn)------------------------------------------------------------------------------------------------29
河南機(jī)電高等??茖W(xué)校
畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
學(xué)生姓名: 陳雪燕 學(xué) 號: 0312343
專 業(yè): 模具設(shè)計(jì)與制造
設(shè)計(jì)(論文)題目:果汁容器成型工藝及塑料模具設(shè)計(jì)
指導(dǎo)教師: 楊占堯
2006年5月15日
畢 業(yè) 設(shè) 計(jì)(論 文)開 題 報(bào) 告
1.結(jié)合畢業(yè)設(shè)計(jì)(論文)課題情況,根據(jù)所查閱的文獻(xiàn)資料,撰寫1500字左右(本科生200字左右)的文獻(xiàn)綜述(包括目前該課題在國內(nèi)外的研究狀況、發(fā)展趨勢以及對本人研究課題的啟發(fā)):
文 獻(xiàn) 綜 述
模具是制造業(yè)的基礎(chǔ)工藝裝備,被稱為“制造業(yè)之母”。由于模具的技術(shù)水平在很大程度上決定著產(chǎn)品的質(zhì)量、新產(chǎn)品的開發(fā)能力和企業(yè)的經(jīng)濟(jì)效益,因此模具生產(chǎn)技術(shù)水平的高低,已成為衡量一個(gè)國家產(chǎn)品制造水平高低的重要標(biāo)志。模具又是“效益放大器”,用模具生產(chǎn)的最終產(chǎn)隨著經(jīng)濟(jì)全球化的進(jìn)一步加快,世界性的產(chǎn)業(yè)結(jié)構(gòu)調(diào)整和轉(zhuǎn)移速度不斷加快,國內(nèi)區(qū)域間生產(chǎn)要素也出現(xiàn)了快速流動趨勢,經(jīng)濟(jì)實(shí)力雄厚的“長三角”將率先成為產(chǎn)業(yè)和資源轉(zhuǎn)移的重要基地,這對制造業(yè)的發(fā)展帶來了難得的機(jī)遇,也為建設(shè)一個(gè)高起點(diǎn)、多功能、集約化的模具產(chǎn)業(yè)集聚基地提供了必要條件。為進(jìn)一步加快模具行業(yè)的發(fā)展、提升模具行業(yè)的地位。品的價(jià)值,往往是模具自身價(jià)值的幾十倍、上百倍。
我國塑料模具工業(yè)和技術(shù)今后的主要發(fā)展方向?qū)?
1、提高大型、精密、復(fù)雜、長壽命模具的設(shè)計(jì)制造水平及比例。這是由于塑料模成型的制品日漸大型化、復(fù)雜化和高精度要求以及因高生產(chǎn)率要求而發(fā)展的一模多控所致。
2、推廣應(yīng)用熱流道技術(shù)、氣輔注射成型技術(shù)和高壓注射成型技術(shù)。采用熱流道技術(shù)的模具可提高制件的生產(chǎn)率和質(zhì)量,并能大幅度節(jié)省塑料制件的原材料和節(jié)約能源,所以廣泛應(yīng)用這項(xiàng)技術(shù)是塑料模具的一大變革。制訂熱流道元器件的國家標(biāo)準(zhǔn),積極生產(chǎn)價(jià)廉高質(zhì)量的元器件,是發(fā)展熱流道模具的關(guān)鍵。氣體輔助注射成型可在保證產(chǎn)品質(zhì)量的前提下,大幅度降低成本。目前在汽車和家電行業(yè)中正逐步推廣使用。氣體輔助注射成型比傳統(tǒng)的普通注射工藝有更多的工藝參數(shù)需要確定和控制,而且其常用于較復(fù)雜的大型制品,模具設(shè)計(jì)和控制的難度較大,因此,開發(fā)氣體輔助成型流動分析軟件,顯得十分重要。另一方面為了確保塑料件精度,繼續(xù)研究發(fā)展高壓注射成型工藝與模具以及注射壓縮成型工藝與模具也非常重要。
3、開發(fā)新的塑料成型工藝和快速經(jīng)濟(jì)模具。以適應(yīng)多品種、少批量的生產(chǎn)方式。
4、提高塑料模標(biāo)準(zhǔn)化水平和標(biāo)準(zhǔn)件的使用率。我國模具標(biāo)準(zhǔn)件水平和模具標(biāo)準(zhǔn)化程度仍較低,與國外差距甚大,在一定程度上制約著我國模具工業(yè)的發(fā)展,為提高模具質(zhì)量和降低模具制造成本,模具標(biāo)準(zhǔn)件的應(yīng)用要大力推廣。為此,首先要制訂統(tǒng)一的國家標(biāo)準(zhǔn),并嚴(yán)格按標(biāo)準(zhǔn)生產(chǎn);其次要逐步形成規(guī)模生產(chǎn)、提高商品化程度、提高標(biāo)準(zhǔn)件質(zhì)量、降低成本;再次是要進(jìn)一步增加標(biāo)準(zhǔn)件規(guī)格品種。
5、應(yīng)用優(yōu)質(zhì)模具材料和先進(jìn)的表面處理技術(shù)對于提高模具壽命和質(zhì)量顯得十分必要。
6、研究和應(yīng)用模具的高速測量技術(shù)與逆向工程。采用三坐標(biāo)測量儀或三坐標(biāo)掃描儀實(shí)現(xiàn)逆向工程是塑料模CAD/CAM的關(guān)鍵技術(shù)之一。研究和應(yīng)用多樣、調(diào)整、廉價(jià)的檢測設(shè)備是實(shí)現(xiàn)逆向工程的必要前提。
我國塑料模工業(yè)從起步到現(xiàn)在,歷經(jīng)半個(gè)多世紀(jì),有了很大發(fā)展,模具水平有了較大提高。在大型模具方面已能生產(chǎn)48英寸大屏幕彩電塑殼注射模具、6.5kg大容量洗衣機(jī)全套塑料模具以及汽車保險(xiǎn)杠和整體儀表板等塑料模具;精密塑料模具方面,已能生產(chǎn)照相機(jī)塑料件模具、多型腔小模數(shù)齒輪模具及塑封模具。如天津津榮天和機(jī)電有限公司和煙臺北極星I.K模具有限公司制造的多腔VCD和DVD齒輪模具,所生產(chǎn)的這類齒輪塑件的尺寸精度、同軸度、跳動等要求都達(dá)到了國外同類產(chǎn)品的水平,而且還采用最新的齒輪設(shè)計(jì)軟件,糾正了由于成型收縮造成的齒形誤差,達(dá)到了標(biāo)準(zhǔn)漸開線齒形要求。還能生產(chǎn)厚度僅為0.08mm的一模兩腔的航空杯模具和難度較高的塑料門窗擠出模等等。注塑模型腔制造精度可達(dá)0.02~0.05mm,表面粗糙度Ra0.2μm,模具質(zhì)量、壽命明顯提高了,非淬火鋼模壽命可達(dá)10~30萬次,淬火鋼模達(dá)50~1000萬次,交貨期較以前縮短,但和國外相比仍有較大差距。挑戰(zhàn)亦是機(jī)遇,所以,我國模具還有很大的發(fā)展空間。
畢 業(yè) 設(shè) 計(jì)(論 文)開 題 報(bào) 告
2.本課題的研究思路(包括要研究或解決的問題和擬采用的研究方法、手段(途徑)及進(jìn)度安排等):
1. 通過收集和查閱各種文獻(xiàn)資料和與同學(xué)老師的交流、指導(dǎo),對目前國內(nèi)外的模具(塑料模具)的發(fā)展?fàn)顩r和發(fā)展趨勢進(jìn)行深入的了解,預(yù)計(jì)用時(shí)間二天;
2. 對工件進(jìn)行結(jié)構(gòu)形狀、尺寸精度、加工工藝性等方面作出詳細(xì)地分析,并查閱相關(guān)資料看是否符合常規(guī)零件結(jié)構(gòu)設(shè)計(jì),預(yù)計(jì)用時(shí)兩天;
3. 經(jīng)過對工件的結(jié)構(gòu)工藝性分析,擬訂可行的注射成型工藝方案,并經(jīng)過分析,研究、比較,選擇一種最為合理的成型工藝作為生產(chǎn)應(yīng)用,估計(jì)用時(shí)間一天;
4. 進(jìn)行主要的設(shè)計(jì)計(jì)算,利用各種經(jīng)驗(yàn)公式或者經(jīng)驗(yàn)數(shù)據(jù)對工作零部件的尺寸的設(shè)計(jì)計(jì)算,預(yù)計(jì)需用時(shí)間四天;
5. 根據(jù)工件的結(jié)構(gòu),材料,生產(chǎn)批量來進(jìn)行模具的總體設(shè)計(jì),包括模具的類型,定位方式,導(dǎo)向方式等方面的設(shè)計(jì);
6. 對模具的主要零部件進(jìn)行設(shè)計(jì),主要有型芯、型腔、定位板、模架和導(dǎo)柱導(dǎo)套等零件,根據(jù)工作需要的強(qiáng)度來設(shè)計(jì)尺寸,包括各零件的圖紙,預(yù)計(jì)需用時(shí)間五天;
7. 模具的總裝圖和工作原理(有裝配簡圖)需要用時(shí)間兩天;
8. 模具主要零部件的加工工藝過程(型芯、型腔)分析與設(shè)計(jì),預(yù)計(jì)用時(shí)間一天;
模具的裝配與調(diào)試,預(yù)計(jì)用時(shí)兩天;
河南機(jī)電高等??茖W(xué)校
材料工程系
專業(yè)
畢業(yè)設(shè)計(jì)/論文
設(shè)計(jì)/論文題目: 果汁容器的工藝成型
及塑料模具設(shè)計(jì)
班 級: 模具033
姓 名: 陳雪燕
指導(dǎo)老師: 楊占堯
完成時(shí)間: 2006.05.12
畢業(yè)設(shè)計(jì)(論文)成績
畢業(yè)設(shè)計(jì)成績
指導(dǎo)老師認(rèn)定成績
小組答辯成績
答辯成績
指導(dǎo)老師簽字
答辯委員會簽字
答辯委員會主任簽字
畢業(yè)設(shè)計(jì)/論文任務(wù)書
題目:果汁容器的成型工藝
及塑料的模具制造
內(nèi)容:(1)完成果汁容器零件的工藝性分析及工藝方案制定
(2)果汁容器模具裝配圖及全部零件圖的繪制
(3)完成模具主要工作零件的工藝規(guī)程編制
(4)編寫設(shè)計(jì)說明書
原始資料:
設(shè)計(jì)題目:果汁容器
材料: PC
生產(chǎn)批量:單件生產(chǎn)
插圖清單
圖1-1 產(chǎn)品圖……………………………………………………………第5頁
圖4-1 型腔圖……………………………………………………………第12頁
圖4-2 型芯圖……………………………………………………………第12頁
圖5-1 型腔圖……………………………………………………………第14頁
圖5-2 澆口圖……………………………………………………………第15頁
圖5-3 分型面一…………………………………………………………第16頁
圖5-4 分型面二…………………………………………………………第16頁
圖5-5 配合圖一…………………………………………………………第18頁
圖5-6 配合圖二…………………………………………………………第18頁
圖6-1 支撐板……………………………………………………………第20頁
表格清單
表一 塑料制件的原料分析-------------------------------------------5
表二 塑料制件注塑成型工藝參數(shù)-------------------------------------------------------7
表三 注射機(jī)的主要參數(shù)-----------------------------------------------------------------24
畢業(yè)設(shè)計(jì)/論文說明書目錄
緒論----------------------------------------------------------------------1
第1章 塑料制件的工藝分析---------------------------------------5
1.1 塑料制件的結(jié)構(gòu)---------------------------5
1.2 塑料制件的原料分析---------------------- 5
1.3 塑料制件注塑成型工藝參數(shù)---------------- 6
1.4 塑料制件的工藝分析---------------------- 7
第2章 成型制品的體積和質(zhì)量的計(jì)算----------------- 8
第3章 成型設(shè)備的選擇----------------------------- 9
3.1 塑料的常用成型方法-----------------------9
3.2 成型設(shè)備的選擇-------------------------- 9
第4章 模具類型及結(jié)構(gòu)形式的比較與選擇-------------10
4.1 澆注系統(tǒng)的設(shè)計(jì)方案--------------------- 10
4.2 型芯、型腔結(jié)構(gòu)的設(shè)計(jì)方案----------------11
第5章 模具方案的確定-----------------------------13
5.1 標(biāo)準(zhǔn)模架的選擇------------------------- 13
5.2 選用注塑機(jī)----------------------------- 14
5.3澆注系統(tǒng)的設(shè)計(jì)-------------------------- 14
5.4 分型面方案的確定----------------------- 15
5.5 推出機(jī)構(gòu)的設(shè)計(jì)------------------------- 16
5.6 加熱和冷卻系統(tǒng)的設(shè)計(jì)--------------------18第6章 模具其他零件(配件)選擇、設(shè)計(jì)以及必要的計(jì)算-------------------------------------------------21
6.1 支承板的強(qiáng)度校核------------------------21
6.2 導(dǎo)向機(jī)構(gòu)的設(shè)計(jì)--------------------------22
6.3 支承釘?shù)脑O(shè)計(jì)----------------------------23
6.4 定位圈的確定----------------------------23
第7章 注塑機(jī)有關(guān)工藝參數(shù)的校核------------------24
7.1 最大注射量的校核------------------------24
7.2 鎖模力的校核----------------------------24
7.3 開模行程的校核--------------------------25
7.4 油壓頂出行程的校核----------------------25
7.5 模具安裝部分的校核----------------------25
第8章 設(shè)計(jì)總結(jié)與感想----------------------------27
致謝 --------------------------------------------28
參考文獻(xiàn) ----------------------------------------29
果汁容器的模具設(shè)計(jì)
摘要
本設(shè)計(jì)的題目是果汁容器的塑料注塑模設(shè)計(jì),從圖紙上分析,該零件總體形狀為錐型。
根據(jù)塑件的特點(diǎn),模具型芯在動模部分。開模后,塑件應(yīng)收縮包緊型芯,而
留在動模部分,其推出機(jī)構(gòu)采用推件板推出的推件方式。該種脫模方式是在分型面處從殼體塑件的周邊推出。推出力大且均勻。對側(cè)壁脫模阻力較大的薄壁箱體或圓筒制品,推出后外觀上不留痕跡。
對合導(dǎo)向機(jī)構(gòu)的功能三保證動定模部分能夠準(zhǔn)確對合,使分別加工在動模和定模上的成型表面在模具閉合后形成形狀和尺寸準(zhǔn)確的腔體,從而保證塑件形狀,壁厚和尺寸的準(zhǔn)確,該模具采用導(dǎo)柱對合導(dǎo)向機(jī)構(gòu)。導(dǎo)柱和型芯一起安裝在動模一側(cè),這樣在合模時(shí)可起保護(hù)作用。
相信不久本模具投入市場一定能帶來很好的效益服務(wù)大眾,服務(wù)社會。
關(guān)鍵詞:模具、型芯、型腔、
(畢業(yè)設(shè)計(jì)/論文英文題目)
Abstract
The topic of this design is the plastics of the juice container to note the mold design, analysis from the diagram paper, the total shape in that spare parts is the type of .
According to the characteristics of the piece , molding tool type at move the mold part.Open the mold empress, the piece of should contract a tight type , but
Stay at move the mold part, its release the organization adoption push a piece the plank releases of push a method.Should grow to take off the mold method is dividing the type to release from the periphery of the hull piece.Release the dint big and even.Take off to the side wall bigger and thin wall in resistance in mold an or circle product, releasing the behind seeming doing not stay the trace.
To function that matching and leading to organization three guarantee to move to settle the mold part can be accurate to match, make process respectively in moving the mold with settle mold of model the surface to become the shape after molding tool shut match with the accurate of in size, from but guarantee the a shape, the wall is thick with the size of accurate, that molding tool the adoption leads the pillar to match to lead to organization.Lead the pillar to install with type together at move the mold a side, like this while matching mold can rise to protect the function.
Belief soon this molding tool devotion the market can bring certainly the good performance serve the public, serving society.
河南機(jī)電高等??茖W(xué)校材料工程系畢業(yè)設(shè)計(jì)說明書/論文
(正文若干頁)
機(jī)械加工工序卡片
產(chǎn)品型號
零(部)件圖號
產(chǎn)品名稱
零(部)件名稱
共( )頁
第( )頁
車間
工序號
工序名稱
材料牌號
毛坯種類
毛坯外形尺寸
每個(gè)毛坯可制件數(shù)
每臺件數(shù)
設(shè)備名稱
設(shè)備型號
設(shè)備編號
同時(shí)加工件數(shù)
夾具編號
夾具名稱
切削液
工位器具編號
工位器具名稱
工序工時(shí)
準(zhǔn)終
單件
工步號
工步內(nèi)容
工藝裝備
主軸轉(zhuǎn)速
r·minˉ1
切削速度
m·minˉ1
進(jìn)給量
mm·rˉ1
切削深度
mm
進(jìn)給次數(shù)
工步工時(shí)
機(jī)動
輔助
設(shè) 計(jì)(日期)
審 核(日期)
標(biāo)準(zhǔn)化(日期)
會 簽(日期)
標(biāo)記
處數(shù)
更改文件號
簽字
日期
標(biāo)記
處數(shù)
更改文件號
簽字
日期
模具典型零件機(jī)械加工工序卡
(模具專業(yè)沖壓、塑料模具課題適用)
機(jī)械加工工藝過程卡
(模具專業(yè)沖壓模具課題適用)
機(jī)械加工工藝過程卡片
產(chǎn)品型號
零(部)件圖號
產(chǎn)品名稱
零(部)件名稱
共( )頁第( )頁
材料牌號
毛坯
種類
毛坯外型尺寸
每個(gè)毛坯可制件數(shù)
每臺
件數(shù)
備注
工序號
工序名稱
工 序 內(nèi) 容
車間
工段
設(shè)備
工 藝 裝 備
工時(shí)
準(zhǔn)終
單件
設(shè)計(jì)日期
審核日期
標(biāo)準(zhǔn)化日期
會簽
日期
標(biāo)記
記數(shù)
更改文
件號
簽字
日期
標(biāo)記
處數(shù)
更該文件號
致謝
參考文獻(xiàn)
_ Corresponding author: Alban Agazzi, Universit de Nantes-Laboratoire de thermocintique de Nantes, La Chantrerie, rue Christian Pauc, BP 50609, 44306 Nantes cedex 3-France, phone : +332 40 68 31 71, fax :+332 40 68 31 41 email : alban.agazziuniv-nantes.fr A METHODOLOGY FOR THE DESIGN OF EFFECTIVE COOLING SYSTEM IN INJECTION MOULDING A.Agazzi 1* , V.Sobotka 1 , R. Le Goff 2 , D.Garcia 2, Y.Jarny 1 1 Universit de Nantes, Nantes Atlantique Universits, Laboratoire de Thermocintique de Nantes, UMR CNRS 6607, rue Christian Pauc, BP 50609, F-44306 NANTES cedex 3, France 2 Ple Europen de Plasturgie, 2 rue Pierre et Marie Curie, F- 01100 BELLIGNAT, France ABSTRACT: In thermoplastic injection moulding, part quality and cycle time depend strongly on the cooling stage. Numerous strategies have been investigated in order to determine the cooling conditions which minimize undesired defects such as warpage and differential shrinkage. In this paper we propose a methodology for the optimal design of the cooling system. Based on geometrical analysis, the cooling line is defined by using conformal cooling concept. It defines the locations of the cooling channels. We only focus on the distribution and intensity of the fluid temperature along the cooling line which is here fixed. We formulate the determination of this temperature distribution, as the minimization of an objective function composed of two terms. It is shown how this two antagonist terms have to be weighted to make the best compromise. The expected result is an improvement of the part quality in terms of shrinkage and warpage. KEYWORDS: Inverse problem, heat transfer, injection moulding, cooling design 1 INTRODUCTION In the field of plastic industry, thermoplastic injection moulding is widely used. The process is composed of four essential stages: mould cavity filling, melt packing, solidification of the part and ejection. Around seventy per cent of the total time of the process is dedicated to the cooling of the part. Moreover this phase impacts directly on the quality of the part 12. As a consequence, the part must be cooled as uniformly as possible so that undesired defects such as sink marks, warpage, shrinkage, thermal residual stresses are minimized. The most influent parameters to achieve these objectives are the cooling time, the number, the location and the size of the channels, the temperature of the coolant fluid and the heat transfer coefficient between the fluid and the inner surface of the channels. The cooling system design was primarily based on the experience of the designer but the development of new rapid prototyping process makes possible to manufacture very complex channel shapes what makes this empirical former method inadequate. So the design of the cooling system must be formulated as an optimization problem. 1.1 HEAT TRANSFER ANALYSIS The study of heat transfer conduction in injection tools is a non linear problem due to the dependence of parameters to the temperature. However thermophysical parameters of the mould such as thermal conductivity and heat capacity remain constant in the considered temperature range. In addition the effect of polymer crystallisation is often neglected and thermal contact resistance between the mould and the part is considered more often as constant. The evolution of the temperature field is obtained by solving the Fouriers equation with periodic boundary conditions. This evolution can be split in two parts: a cyclic part and an average transitory part. The cyclic part is often ignored because the depth of thermal penetration does not affect significantly the temperature field 3. Many authors used an average cyclic analysis which simplifies the calculus, but the fluctuations around the average can be comprised between 15% and 40% 3. The closer of the part the channels are, the higher the fluctuations around the average are. Hence in that configuration it becomes very important to model the transient heat transfer even in stationary periodic state. In this study, the periodic transient analysis of temperature will be preferred to the average cycle time analysis. It should be noticed that in practice the design of the cooling system is the last step for the tool design. Nevertheless cooling being of primary importance for the quality of the part, the thermal design should be one of the first stages of the design of the tools. DOI10.1007/s12289-010-0695-2 Springer-VerlagFrance2010 Int J Mater Form (2010) Vol. 3 Suppl 1: 16 13 1.2 OPTIMIZATION TECHNIQUES IN MOULDING In the literature, various optimization procedures have been used but all focused on the same objectives. Tang et al. 4 used an optimization process to obtain a uniform temperature distribution in the part which gives the smallest gradient and the minimal cooling time. Huang 5 tried to obtain uniform temperature distribution in the part and high production efficiency i.e a minimal cooling time. Lin 6 summarized the objectives of the mould designer in 3 facts. Cool the part the most uniformly, achieve a desired mould temperature so that the next part can be injected and minimize the cycle time. The optimal cooling system configuration is a compromise between uniformity and cycle time. Indeed the longer the distance between the mould surface cavity and the cooling channels is, the higher the uniformity of the temperature distribution will be 6. Inversely, the shorter the distance is, the faster the heat is removed from the polymer. However non uniform temperatures at the mould surface can lead to defects in the part. The control parameters to get these objectives are then the location and the size of the channels, the coolant fluid flow rate and the fluid temperature. Two kinds of methodology are employed. The first one consists in finding the optimal location of the channels in order to minimize an objective function 47. The second approach is based on a conformal cooling line. Lin 6 defines a cooling line representing the envelop of the part where the cooling channels are located. Optimal conditions (location on the cooling and size of the channels) are searched on this cooling line. Xu et al. 8 go further and cut the part in cooling cells and perform the optimization on each cooling cell. 1.3 COMPUTATIONAL ALGORITHMS To compute the solution, numerical methods are needed. The heat transfer analysis is performed either by boundary elements 7 or finite elements method 4. The main advantage of the first one is that the number of unknowns to be computed is lower than with finite elements. Only the boundaries of the problem are meshed hence the time spent to compute the solution is shorter than with finite elements. However this method only provides results on the boundaries of the problem. In this study a finite element method is preferred because temperatures history inside the part is needed to formulate the optimal problem. To compute optimal parameters which minimize the objective function Tang et al. 4 use the Powells conjugate direction search method. Mathey et al. 7 use the Sequential Quadratic Programming which is a method based on gradients. It can be found not only deterministic methods but also evolutionary methods. Huang et al. 5 use a genetic algorithm to reach the solution. This last kind of algorithm is very time consuming because it tries a lot of range of solution. In practice time spent for mould design must be minimized hence a deterministic method (conjugate gradient) which reaches an acceptable local solution more rapidly is preferred. 2 METHODOLOGY 2.1 GOALS The methodology described in this paper is applied to optimize the cooling system design of a T-shaped part (Figure 1). This shape is encountered in many papers so comparison can easily be done in particularly with Tang et al. 4. Figure 1 : Half T-shaped geometry Based on a morphological analysis of the part, two surfaces 1 and 3 are introduced respectively as the erosion and the dilation (cooling line) of the part (Figure 1). The boundary condition of the heat conduction problem along the cooling line 3 is a third kind condition with infinite temperatures fixed as fluid temperatures. The optimization consists in finding these fluid temperatures. Using a cooling line prevents to choose the number and size of cooling channels before optimization is carried out. This represents an important advantage in case of complex parts where the location of channels is not intuitive. The location of the erosion line in the part corresponds to the minimum solidified thickness of polymer at the end of cooling stage so that ejectors can remove the part from the mould without damages. 2.2 OBJECTIVE FUNCTION In cooling system optimization, the part quality should be of primarily importance. Because the minimum cooling time of the process is imposed by the thickness and the material properties of the part, it is important to reach the optimal quality in the given time. The fluid temperature impacts directly the temperature of the mould and the part, and for turbulent fluid flow the only control parameter is the cooling fluid temperature. In the following, the parameter to be optimized is the fluid temperature and the determination of the optimal distribution around the part is formulated as the minimization of an objective function S composed of two terms computed at the end of the cooling period (Equation (1). The goal of the first term S 1 is to reach a temperature level along the erosion of the part. The second term S 2 used in many works 47 aims to homogenize the temperature distribution at the surface of the part and therefore to reduce the components of 14 thermal gradient both along the surface 2 and through the thickness of the part. These two terms are weighted by introducing the variable ref T . It must be noted that when ref T the criterion is reduced to the first term. On the contrary the weight of the second term is increased when 0 ref T . () + = 2 2 2 1 1 2 . d T TT d TT TT TS rfejecinj ejec fluid (1) ejec T : Ejection temperature, inj T : Injection temperature, ref T : Reference temperature, inf T : Fluid temperature, T : Temperature field computed with the periodic conditions () ),0(,0 XtTXT f += 21 X , and f t,0 is the cooling period, = dTT 2 2 . 1 : Average surface temperature of the part at the ejection time f t . 3 NUMERICAL RESULTS Numerical results are compared with those of Tang et al 4 who consider the optimal cooling of the T-shaped part by determining the optimal location of 7 cooling channels and the optimal fluid flow rate of the coolant. The first step was to reproduce their results (left part of Figure 2) obtained with the following conditions (case w=0.75 in 4): KT fluid 303= , fluid flow rate scmQ /364 3 = in each cooling channels, s 5.23= f t . Figure 2: Geometry Tang (left) and cooling line (right) Case 1: Cooling line versus finite number of channels for a constant fluid temperature ( fluid T ). The average distance ( cmd 5.1= ) between the 7 channels and the part surface in the cooling system determined by Tang is adopted in our system for locating the cooling line 3 . Moreover, the fluid temperature and the heat transfer coefficient values issued from Tang are imposed on the dilation of the part 3 . In Figure 3 the temperature profiles along the part surface 2 are compared at the ejection time f t . All the temperature profiles along the surfaces 3,2,1 = i i are plotted counter-clockwise only on the half part from i A to i B (Figure 1) and at the ejection time. We observe that the magnitude of the temperature is less uniform with the cooling line than with the 7 channels (15K instead of 5K). Hence the optimal cooling configuration computed with a finite number of channels is better than this with the cooling line and it will be then considered as a reference. Figure 3: Temperature profiles along the part surface 2 Case 2: Cooling line with a variable fluid temperature ( )(sT fluid ) and the weighting factor ref T . The fluid temperatures )(sT fluid are computed by minimizing the objective function of Equation 1 where the second term is ignored. The results are plotted in Figures 4 and 5. Figure 4: Temperature profiles along the erosion Figure 5: Temperature profiles along the part surface In Figure 4 the temperature profile on the erosion is much uniform and close to the ejection temperature with our method ( -5 1 1.79.10S = ) than with Tangs method ( -5 1 2.32.10=S ). However in both cases a peak remains between 0.12m and 0.14m which corresponds to the top of the rib (B 1 in Figure 1). This hotspot is due to the geometry of the part and is very difficult to cool. Nevertheless in Figure 5 we notice that the profile of temperature at the part surface is less uniform than in 15 case 1 (20K instead of 15K). In conclusion, the first term is not sufficient to improve the homogeneity at the part surface but it is adequate for achieving a desired level of temperature in the part. Case 3: Cooling line with ( )(sT fluid ) and the weighting factors KT ref 10= and KT ref 100= . The fluid temperatures )(sT fluid are now computed by minimizing the objective function of Equation 1 with KT ref 10= and KT ref 100= . Results are plotted in Figures 6 and 7. Figure 6: Temperature profiles along the part surface Figure 7: Temperature profiles along the erosion The influence of the term S 2 is shown in Figure 6. This term makes the surface temperature of the part uniform. Indeed in case KT ref 10= temperature is quasi-constant all over the surface 2 except for the hotspot as explained previously. However for this value of ref T , the temperature on the erosion is not acceptable, the mean temperature being too high (340K for a desired level of 336 K). Then the second term improves the homogeneity at the interface but hedges the solution. Making uniform the temperature at the interface meanwhile extracting the total heat flux needed to obtain a desired level of temperature in the part, become antagonistic problems if this level is too low. The best solution will be a compromise between quality and efficiency. For example, by setting KT ref 100= the level of temperature ( ejec T ) in the part is reached whereas the solution becomes less uniform than with the value of KT ref 10= . Nonetheless this solution remains more uniform than the solution given by Tang. The optimal fluid temperature profile along the dilation of the half part is plotted (Figure 8). Figure 8: Optimal fluid temperature profile 4 CONCLUSIONS In this paper, an optimization method was developed to determine the temperature distribution on a cooling line to obtain a uniform temperature field in the part which leads to the smallest gradient and the minimal cooling time. The methodology was compared with those found in the literature and showed its efficiency and benefits. Notably it does not require specifying a priori the number of cooling channels. Further work will consist in deciding a posteriori the minimal number of channels needed to match the solution given by the optimal fluid temperature profile REFERENCES 1 Pichon J. F. Injection des matires plastiques. Dunod, 2001. 2 Plastic Business Group Bayer. Optimised mould temperature control. ATI 1104, 1997. 3 S. Y. Hu, N. T. Cheng, S. C. Chen. Effect of cooling system design and process parameters on cyclic variation of mold temperatures simulation by DRBEM, Plastics, rubber and composites proc. and appl., 23:221-232, 1995 4 L. Q Tang, K. Pochiraju, C. Chassapis, S. Manoochehri. A computer-aided optimization approach fort he design of injection mold cooling systems. J. of Mech. Design, 120:165-174, 1998. 5 J. Huang, G. M. Fadel. Bi-objective optimization design of heterogeneous injection mold cooling systems. ASME, 123:226-239, 2001. 6 J. C. Lin. Optimum cooling system design of a free- form injection mold using an abductive network. J. of Mat. Proc. Tech., 120:226-236, 2002. 7 E. Mathey, L. Penazzi, F.M. Schmidt, F. Rond- Oustau. Automatic optimization of the cooling of injection mold base don the boundary element method. Materials Proc. and Design, NUMIFORM, pages 222-227, 2004. 8 X. Xu, E. Sachs, S. Allen. The design of conformal cooling channels in injection molding tooling. Polymer engineering and science, 41:1265-1279, 2001. 16
收藏