九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

微積分學(xué)PPt標(biāo)準(zhǔn)課件20-第20講羅必達(dá)發(fā)則

上傳人:san****019 文檔編號(hào):21153352 上傳時(shí)間:2021-04-25 格式:PPT 頁(yè)數(shù):30 大?。?28.60KB
收藏 版權(quán)申訴 舉報(bào) 下載
微積分學(xué)PPt標(biāo)準(zhǔn)課件20-第20講羅必達(dá)發(fā)則_第1頁(yè)
第1頁(yè) / 共30頁(yè)
微積分學(xué)PPt標(biāo)準(zhǔn)課件20-第20講羅必達(dá)發(fā)則_第2頁(yè)
第2頁(yè) / 共30頁(yè)
微積分學(xué)PPt標(biāo)準(zhǔn)課件20-第20講羅必達(dá)發(fā)則_第3頁(yè)
第3頁(yè) / 共30頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《微積分學(xué)PPt標(biāo)準(zhǔn)課件20-第20講羅必達(dá)發(fā)則》由會(huì)員分享,可在線閱讀,更多相關(guān)《微積分學(xué)PPt標(biāo)準(zhǔn)課件20-第20講羅必達(dá)發(fā)則(30頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、高 等 院 校 非 數(shù) 學(xué) 類 本 科 數(shù) 學(xué) 課 程 腳 本 編 寫(xiě) : 劉 楚 中 教 案 制 作 : 劉 楚 中 第 四 章 一 元 函 數(shù) 的 導(dǎo) 數(shù) 與 微 分本 章 學(xué) 習(xí) 要 求 : 理 解 導(dǎo) 數(shù) 和 微 分 的 概 念 。 熟 悉 導(dǎo) 數(shù) 的 幾 何 意 義 以 及 函 數(shù) 的 可 導(dǎo) 、 可 微 、 連 續(xù) 之 間 的 關(guān) 系 。 熟 悉 一 階 微 分 形 式 不 變 性 。 熟 悉 導(dǎo) 數(shù) 和 微 分 的 運(yùn) 算 法 則 , 能 熟 練 運(yùn) 用 求 導(dǎo) 的 基 本 公 式 、 復(fù) 合 函 數(shù) 求 導(dǎo) 法 、 隱 函 數(shù) 求 導(dǎo) 法 、 反 函 數(shù) 求 導(dǎo) 法 、 參 數(shù)

2、 方 程 求 導(dǎo) 法 、 取 對(duì) 數(shù) 求 導(dǎo) 法 等 方 法 求 出 函 數(shù) 的 一 、 二 階 導(dǎo) 數(shù) 和 微 分 。 了 解 n 階 導(dǎo) 數(shù) 的 概 念 , 會(huì) 求 常 見(jiàn) 函 數(shù) 的 n 階 導(dǎo) 數(shù) 。 熟 悉 羅 爾 中 值 定 理 、 拉 格 朗 日 中 值 定 理 、 柯 西 中 值 定 理 和 泰 勒 中 值 定 理 , 并 能 較 好 運(yùn) 用 上 述 定 理 解 決 有 關(guān) 問(wèn) 題 ( 函 數(shù) 方 程 求 解 、 不 等 式 的 證 明 等 ) 。 掌 握 羅 必 塔 法 則 并 能 熟 練 運(yùn) 用 它 計(jì) 算 有 關(guān) 的 不 定 式 極 限 。 Hospital L第四節(jié) 羅

3、必達(dá)法則第四章 一元函數(shù)的導(dǎo)數(shù)與微分 大量 , 為此, 我們稱這類極限為“不定型”,. 00 或我們知道: 兩個(gè)無(wú)窮小量或兩個(gè)無(wú)窮大量的商的極限 , 隨著無(wú)窮小量或無(wú)窮大量的形式不同 , 極限值可能存在、也可能不存在、可能是無(wú)窮小量、也可能是無(wú)窮記為: 以下各類極限稱為不定型的極限:, 00 , , 0 , , 1 , 00 . 0其中 , ; 0表示無(wú)窮小量; 表示無(wú)窮大量 . 1 1為極限的變量表示以不定型的極限 00 0 1 00 0倒數(shù)法取對(duì)數(shù)法只需討論這兩種極限 羅必達(dá)法則設(shè)在某一極限過(guò)程中 00 , 0)(lim , 0)(lim )1( xgxf , )(lim , )(lim

4、xgxf , )(, )( , )2(存在在該極限過(guò)程中xgxf , 0)( xg且, )( )(lim )3(存在或?yàn)闊o(wú)窮大xg xf . )( )(lim)( )(lim xg xfxg xf 則有 , )(, )( , )2(存在在該極限過(guò)程中xgxf 解釋:是指:, 0 xx 若極限過(guò)程為. )(U )( , )( 0存在在則xxgxf , x若極限過(guò)程為. | )( , )( 存在當(dāng)則Xxxgxf . 0時(shí)情形先證xx , 0)(lim , 0)(lim 00 xgxf xxxx由于 , )( , )( 0總可令處是否連續(xù)在故不論xxgxf , 0)( , 0)( 00 xgxf內(nèi)從

5、而在成為連續(xù)函數(shù)使得 )U( , )( , )( 0 xxgxf可選擇適當(dāng)區(qū)間來(lái)運(yùn)用柯西中值定理.型就可將令 )(1)( , )(1)( 21 xgxxfx . 00 型轉(zhuǎn)換為證 的極限過(guò)程轉(zhuǎn)換則可將令 , 1 xtx . 0)( 0 0的極限過(guò)程為 tt詳細(xì)的證明過(guò)程請(qǐng)同學(xué)們自己看書(shū) . 在運(yùn)用羅必達(dá)法則時(shí) , 不存在如果 )( )(lim xg xf但也不是無(wú)窮大 , 則不能說(shuō)明不存 )( )(lim xg xf在 . 此時(shí)應(yīng)重新另找其它方法進(jìn)行計(jì)算 .羅必達(dá)法則只限于求, 00型的極限和其它類型的不定型應(yīng)首先化成這兩種形式才能用羅必達(dá)法則 . 在運(yùn)用羅必達(dá)法則求極限過(guò)程中, 極限存在并且

6、不等于零的因子可以提出來(lái), 這樣可使問(wèn)題簡(jiǎn)化.在運(yùn)用羅必達(dá)法則求極限過(guò)程中, 盡可能運(yùn)用等價(jià)無(wú)窮小替代方法, 它往往可使問(wèn)題得到明顯的簡(jiǎn)化. 如果在使用羅必達(dá)法則后 , 仍是 )( )(lim xg xf, 00型或仍滿足羅必達(dá)法且 )( , )( xgxf 則條件 , 則可繼續(xù)使用羅必達(dá)法則 .使用羅必達(dá)法則要注意觀察條件是否滿足, 不然會(huì)出錯(cuò). . coslim 0 x xexx 求001sinlimcoslim 00 xex xe xxxx 1此題不用羅必達(dá)法則也可作: 分子加 1 減 1 ,然后運(yùn)用等價(jià)無(wú)窮小替代即可 .例 1解 . lnlim xxx 求11limlnlim xxx

7、xx 01lim xx例 2解 . sinlim x xxx 求 )cos1(limsinlim xx xx xx 不存在 ,故不能用羅必達(dá)法則求此極限 . . 1) sin1 (lim sinlim x xx xx xx實(shí)際上小 心 !例 3解 . sintanlim 0 xx xxx 求00 xxxx xx xx cos1 1seclimsintanlim 200 x xxx sinsectan2lim 20 2cos2lim 30 xx(化簡(jiǎn))在使用羅必達(dá)法則時(shí) , 要注意進(jìn)行化簡(jiǎn)工作 , 它會(huì)使問(wèn)題變得簡(jiǎn)單 . 連續(xù)使用羅必達(dá)法則00例 4解 . |ln |lncoslim axax

8、ee axx 求|ln |lncoslim axax ee axx |ln |lnlimcoslim axaxax ee axx )(limcos axe eea x axax ax eeea axaxxax lim1limcosxaxa eea limcos acos 00運(yùn)用羅必達(dá)法則時(shí), 定式因子如有極限應(yīng)單獨(dú)分出計(jì)算.例 5解 例 6解 .1sin1lim 220 xxx求xx xxxx xx 22 220220 sin sin lim1sin1lim xx xxxxx 220 sin )sin)(sin(lim xx xxx xx xx sinsinlim sinsinlim 200

9、 30 sinlim2 x xxx xx sin20 3cos1lim2 x xx 221cos1 xx 31321lim2 220 xxx極限不等于零的因子 . , 0 , lim Znaex xanx求xanxxanx eaxnex 1limlim xa nx ea xnn 2 2)1(lim 次 ! limn xanx ea n0 如果 n 不是 正整數(shù) , 怎 么辦? 1 knk Zk例 7解夾逼定理 . lim 10010 2xe xx 求00 1021010010 50 lim lim 22 xexe xxxx 00你還打算做下去嗎?這樣做 , 分母中 x 的次數(shù)將越來(lái)越高 , 而

10、分子不變 , 極限始終無(wú)法求出 .例 8解 將原極限稍加變形 :22 1100010010 lim lim xxxx exxe 213 1010 2100lim xx ex x 21 98050lim xx ex 次50 0! 50lim 210 xx e. lim 10010 2xe xx 求00例 8解 下面的介紹的是利用倒數(shù)法或取對(duì)數(shù)法將其它的不定型轉(zhuǎn)化為可以運(yùn)用羅必達(dá)法則計(jì)算的例題 . . lnlim 0 xxx 求0 xxxx xx 1lnlimlnlim 00 0)(lim11lim 020 xxx xx倒數(shù)法 .用另一種形式顛倒行不行 ?行 , 但繁些 .存在一個(gè)選擇問(wèn)題.例 9

11、解 . ln11 lim 1 xx xx求這種形式可以直接通分 . xx xxxxxx xx ln)1( )1(ln lim ln11 lim 11 001ln ln lim1 xxx xxx 002111ln 1ln lim1 x xx 該題也可 用倒數(shù)法例 10解 .arctan2lim ln1xx x 求00運(yùn)用取對(duì)數(shù)法 . xx x ln1arctan2lim ln )arctan2 ln(limexp x xx )arctan2 ln(ln1 explim xxx 0例 11解 2arctan1limexp 2 xxxx 00 11limexp 22xxx 1e .)1( lim 110 xxx ex 求1運(yùn)用取對(duì)數(shù)法 .原式 )1ln(lim exp 20 x xxx 00 2 11 1 exp xx 21 )1(2 1 exp ex例 12解 . )( 111 lim 2 nn nn 求這是數(shù)列的極限xxnn xxnn )()( 111 lim 111 lim 22 x xxx 1 ) 111 ( lnlimexp 2 t ttt ) 1 ( lnlimexp 20 xt 1 e羅必達(dá) 例 13解此題也可用重要極限的方法來(lái)求解. :方法求解此題可以按重要極限的 22 11 11 1 22 111lim111lim nnnnnnnn nnnn .e

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!