2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 專題3.2 導(dǎo)數(shù)的應(yīng)用試題(含解析).doc
《2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 專題3.2 導(dǎo)數(shù)的應(yīng)用試題(含解析).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 專題3.2 導(dǎo)數(shù)的應(yīng)用試題(含解析).doc(66頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 專題3.2 導(dǎo)數(shù)的應(yīng)用試題(含解析) 【三年高考】 1.【xx江蘇,20】 已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點(diǎn)是的零點(diǎn).(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值) (1)求關(guān)于 的函數(shù)關(guān)系式,并寫(xiě)出定義域; (2)證明:; (3)若,這兩個(gè)函數(shù)的所有極值之和不小于,求的取值范圍. 【答案】(1)(2)見(jiàn)解析(3) 列表如下 x + 0 – 0 + 極大值 極小值 故的極值點(diǎn)是. 從而, 因此,定義域?yàn)? (2)由(1)知,. 設(shè),則. 當(dāng)時(shí),,從而在上單調(diào)遞增. 因?yàn)?,所以,故,? 因此. 因此a的取值范圍為. 【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、極值及零點(diǎn) 【名師點(diǎn)睛】涉及函數(shù)的零點(diǎn)問(wèn)題、方程解的個(gè)數(shù)問(wèn)題、函數(shù)圖像交點(diǎn)個(gè)數(shù)問(wèn)題,一般先通過(guò)導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最大值、最小值、變化趨勢(shì)等,再借助函數(shù)的大致圖象判斷零點(diǎn)、方程根、交點(diǎn)的情況,歸根到底還是研究函數(shù)的性質(zhì),如單調(diào)性、極值,然后通過(guò)數(shù)形結(jié)合的思想找到解題的思路. 2.【xx高考江蘇,19】已知函數(shù) (1)設(shè). ①求方程=2的根; ②若對(duì)任意,不等式恒成立,求實(shí)數(shù)m的最大值; (2)若,函數(shù)有且只有1個(gè)零點(diǎn),求ab的值. 【答案】(1)①0 ②4 (2)1 【解析】 試題分析:(1)①根據(jù)指數(shù)間倒數(shù)關(guān)系轉(zhuǎn)化為一元二次方程,求方程根;②根據(jù)指數(shù)間平方關(guān)系,將不等式轉(zhuǎn)化為一元不等式,再利用變量分離轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值,最后根據(jù)基本不等式求最值;(2)根據(jù)導(dǎo)函數(shù)零點(diǎn)情況,確定函數(shù)單調(diào)變化趨勢(shì),結(jié)合圖象確定唯一零點(diǎn)必在極值點(diǎn)取得,從而建立等量關(guān)系,求出ab的值. 試題解析:(1)因?yàn)椋? ①方程,即,亦即, 所以,于是,解得. ②由條件知. 因?yàn)閷?duì)于恒成立,且, 所以對(duì)于恒成立. 而,且, 所以,故實(shí)數(shù)的最大值為4. (2)因?yàn)楹瘮?shù)只有1個(gè)零點(diǎn),而, 所以0是函數(shù)的唯一零點(diǎn). 因?yàn)?,又由知? 所以有唯一解. 令,則, 從而對(duì)任意,,所以是上的單調(diào)增函數(shù), 于是當(dāng),;當(dāng)時(shí),. 因而函數(shù)在上是單調(diào)減函數(shù),在上是單調(diào)增函數(shù). 下證. 若,則,于是, 又,且函數(shù)在以和為端點(diǎn)的閉區(qū)間上的圖象不間斷,所以在和之間存在的零點(diǎn),記為. 因?yàn)?,所以,又,所以與“0是函數(shù)的唯一零點(diǎn)”矛盾. 若,同理可得,在和之間存在的非0的零點(diǎn),矛盾. 因此,. 于是,故,所以. 【考點(diǎn)】指數(shù)函數(shù)、基本不等式、利用導(dǎo)數(shù)研究函數(shù)單調(diào)性及零點(diǎn) 【名師點(diǎn)睛】對(duì)于函數(shù)零點(diǎn)個(gè)數(shù)問(wèn)題,可利用函數(shù)的值域或最值,結(jié)合函數(shù)的單調(diào)性、草圖等確定其中參數(shù)的范圍.從圖象的最高點(diǎn)、最低點(diǎn),分析函數(shù)的最值、極值;從圖象的對(duì)稱性,分析函數(shù)的奇偶性;從圖象的走向趨勢(shì),分析函數(shù)的單調(diào)性、周期性等.但需注意探求與論證之間區(qū)別,論證是充要關(guān)系,要充分利用零點(diǎn)存在定理及函數(shù)單調(diào)性嚴(yán)格說(shuō)明函數(shù)零點(diǎn)個(gè)數(shù). 3.【xx高考江蘇,19】已知函數(shù). (1)試討論的單調(diào)性; (2)若(實(shí)數(shù)c是a與無(wú)關(guān)的常數(shù)),當(dāng)函數(shù)有三個(gè)不同的零點(diǎn)時(shí),a 的取值范圍恰好是,求c的值. 【答案】(1)當(dāng)時(shí), 在上單調(diào)遞增; 當(dāng)時(shí), 在,上單調(diào)遞增,在上單調(diào)遞減; 當(dāng)時(shí), 在,上單調(diào)遞增,在上單調(diào)遞減. (2) 【解析】(1),令,解得,. 當(dāng)時(shí),因?yàn)椋ǎ?,所以函?shù)在上單調(diào)遞增; 當(dāng)時(shí),時(shí),,時(shí),, 所以函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減; 當(dāng)時(shí),時(shí),,時(shí),, 所以函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減. (2)由(1)知,函數(shù)的兩個(gè)極值為,,則函數(shù)有三個(gè) 零點(diǎn)等價(jià)于,從而或. 又,所以當(dāng)時(shí),或當(dāng)時(shí),. 設(shè),因?yàn)楹瘮?shù)有三個(gè)零點(diǎn)時(shí),的取值范圍恰好是 ,則在上,且在上均恒成立, 從而,且,因此. 此時(shí),, 因函數(shù)有三個(gè)零點(diǎn),則有兩個(gè)異于的不等實(shí)根, 所以,且, 解得. 綜上. 【考點(diǎn)定位】利用導(dǎo)數(shù)求函數(shù)單調(diào)性、極值、函數(shù)零點(diǎn) 4.【xx課標(biāo)1,理21】已知函數(shù). (1)討論的單調(diào)性; (2)若有兩個(gè)零點(diǎn),求a的取值范圍. 【解析】 試題分析:(1)討論單調(diào)性,首先進(jìn)行求導(dǎo),發(fā)現(xiàn)式子特點(diǎn)后要及時(shí)進(jìn)行因式分解,在對(duì)按,進(jìn)行討論,寫(xiě)出單調(diào)區(qū)間;(2)根據(jù)第(1)題,若,至多有一個(gè)零點(diǎn).若,當(dāng)時(shí),取得最小值,求出最小值,根據(jù),,進(jìn)行討論,可知當(dāng)有2個(gè)零點(diǎn),設(shè)正整數(shù)滿足,則 .由于,因此在有一個(gè)零點(diǎn).所以的取值范圍為. 【考點(diǎn)】含參函數(shù)的單調(diào)性,利用函數(shù)零點(diǎn)求參數(shù)取值范圍. 【名師點(diǎn)睛】研究函數(shù)零點(diǎn)問(wèn)題常常與研究對(duì)應(yīng)方程的實(shí)根問(wèn)題相互轉(zhuǎn)化.已知函數(shù)有2個(gè)零點(diǎn)求參數(shù)取值范圍,第一種方法是分離參數(shù),構(gòu)造不含參數(shù)的函數(shù),研究其單調(diào)性、極值、最值,判斷與其交點(diǎn)的個(gè)數(shù),從而求出a的范圍;第二種方法是直接對(duì)含參函數(shù)進(jìn)行研究,研究其單調(diào)性、極值、最值,注意點(diǎn)是若有2個(gè)零點(diǎn),且函數(shù)先減后增,則只需其最小值小于0,且后面還需驗(yàn)證有最小值兩邊存在大于0的點(diǎn). 5.【xx課標(biāo)II,理】已知函數(shù),且。 (1)求; (2)證明:存在唯一的極大值點(diǎn),且。 【答案】(1); (2)證明略。 【解析】 (2)由(1)知 ,。 設(shè),則。 當(dāng) 時(shí), ;當(dāng) 時(shí), , 所以 在單調(diào)遞減,在 單調(diào)遞增。 【考點(diǎn)】 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)研究函數(shù)的極值 【名師點(diǎn)睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識(shí)點(diǎn),所以在歷屆高考中,對(duì)導(dǎo)數(shù)的應(yīng)用的考查都非常突出 ,本專題在高考中的命題方向及命題角度 從高考來(lái)看,對(duì)導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行: (1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系。 (2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù)。 (3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問(wèn)題。 (4)考查數(shù)形結(jié)合思想的應(yīng)用。 6.【xx課標(biāo)3,理21】已知函數(shù) . (1)若 ,求a的值; (2)設(shè)m為整數(shù),且對(duì)于任意正整數(shù)n ,求m的最小值. 【答案】(1) ; (2) 【解析】 試題分析:(1)由原函數(shù)與導(dǎo)函數(shù)的關(guān)系可得x=a是在的唯一最小值點(diǎn),列方程解得 ; (2)利用題意結(jié)合(1)的結(jié)論對(duì)不等式進(jìn)行放縮,求得,結(jié)合可知實(shí)數(shù) 的最小值為 【考點(diǎn)】 導(dǎo)數(shù)研究函數(shù)的單調(diào)性;導(dǎo)數(shù)研究函數(shù)的最值;利用導(dǎo)數(shù)證明不等式 【名師點(diǎn)睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識(shí)點(diǎn),所以在歷屆高考中,對(duì)導(dǎo)數(shù)的應(yīng)用的考查都非常突出 ,本專題在高考中的命題方向及命題角度 從高考來(lái)看,對(duì)導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行: (1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系. (2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù). (3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問(wèn)題. (4)考查數(shù)形結(jié)合思想的應(yīng)用. 7.【xx山東,理20】已知函數(shù),,其中是自然對(duì)數(shù)的底數(shù). (Ⅰ)求曲線在點(diǎn)處的切線方程; (Ⅱ)令,討論的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值. 【答案】(Ⅰ). (Ⅱ)綜上所述: 當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增, 函數(shù)有極小值,極小值是; 當(dāng)時(shí),函數(shù)在和和上單調(diào)遞增,在上單調(diào)遞減,函數(shù)有極大值,也有極小值, 極大值是 極小值是; 當(dāng)時(shí),函數(shù)在上單調(diào)遞增,無(wú)極值; 當(dāng)時(shí),函數(shù)在和上單調(diào)遞增, 在上單調(diào)遞減,函數(shù)有極大值,也有極小值, 極大值是; 極小值是. (Ⅱ)由題意得 , 因?yàn)? , 令 則 所以在上單調(diào)遞增. 因?yàn)? 所以 當(dāng)時(shí), 當(dāng)時(shí), 極大值為, 當(dāng)時(shí)取到極小值,極小值是 ; ②當(dāng)時(shí),, 所以 當(dāng)時(shí),,函數(shù)在上單調(diào)遞增,無(wú)極值; 當(dāng)時(shí),函數(shù)在上單調(diào)遞增,無(wú)極值; 當(dāng)時(shí),函數(shù)在和上單調(diào)遞增, 在上單調(diào)遞減,函數(shù)有極大值,也有極小值, 極大值是; 極小值是. 【考點(diǎn)】1.導(dǎo)數(shù)的幾何意義.2.應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值.3.分類討論思想. 【名師點(diǎn)睛】1.函數(shù)f (x)在點(diǎn)x0處的導(dǎo)數(shù)f ′(x0)的幾何意義是曲線y=f (x)在點(diǎn)P(x0,y0)處的切線的斜率.相應(yīng)地,切線方程為y?y0=f ′(x0)(x?x0).注意:求曲線切線時(shí),要分清在點(diǎn)P處的切線與過(guò)點(diǎn)P的切線的不同. 2. 本題主要考查導(dǎo)數(shù)的幾何意義、應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值、分類討論思想.本題覆蓋面廣,對(duì)考生計(jì)算能力要求較高,是一道難題.解答本題,準(zhǔn)確求導(dǎo)數(shù)是基礎(chǔ),恰當(dāng)分類討論是關(guān)鍵,易錯(cuò)點(diǎn)是分類討論不全面、不徹底、不恰當(dāng),或因復(fù)雜式子變形能力差,而錯(cuò)漏百出.本題能較好的考查考生的邏輯思維能力、基本計(jì)算能力、分類討論思想等. 8.【xx北京,理19】已知函數(shù). (Ⅰ)求曲線在點(diǎn)處的切線方程; (Ⅱ)求函數(shù)在區(qū)間上的最大值和最小值. 【答案】(Ⅰ);(Ⅱ)最大值1;最小值. 【解析】 所以函數(shù)在區(qū)間上單調(diào)遞減. 因此在區(qū)間上的最大值為,最小值為. 【考點(diǎn)】1.導(dǎo)數(shù)的幾何意義;2.利用導(dǎo)數(shù)求函數(shù)的最值. 【名師點(diǎn)睛】這道導(dǎo)數(shù)題并不難,比一般意義上的壓軸題要簡(jiǎn)單很多,第二問(wèn)比較有特點(diǎn)是需要求二階導(dǎo)數(shù),因?yàn)椴荒芘袛嗪瘮?shù)的單調(diào)性,所以需要再求一次導(dǎo)數(shù),設(shè) ,再求,一般這時(shí)就可求得函數(shù)的零點(diǎn),或是恒成立,這樣就能知道函數(shù)的單調(diào)性,根據(jù)單調(diào)性求最值,從而判斷的單調(diào)性,求得最值. 9.【xx天津,理20】設(shè),已知定義在R上的函數(shù)在區(qū)間內(nèi)有一個(gè)零點(diǎn),為的導(dǎo)函數(shù). (Ⅰ)求的單調(diào)區(qū)間; (Ⅱ)設(shè),函數(shù),求證:; (Ⅲ)求證:存在大于0的常數(shù),使得對(duì)于任意的正整數(shù),且 滿足. 【答案】 (1)增區(qū)間是,,減區(qū)間是.(2)(3)證明見(jiàn)解析 當(dāng)x變化時(shí),的變化情況如下表: x + - + ↗ ↘ ↗ 所以,的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是. (III)證明:對(duì)于任意的正整數(shù) ,,且, 令,函數(shù). 由(II)知,當(dāng)時(shí),在區(qū)間內(nèi)有零點(diǎn); 當(dāng)時(shí),在區(qū)間內(nèi)有零點(diǎn). 所以在內(nèi)至少有一個(gè)零點(diǎn),不妨設(shè)為,則. 由(I)知在上單調(diào)遞增,故, 于是. 因?yàn)楫?dāng)時(shí),,故在上單調(diào)遞增, 所以在區(qū)間上除外沒(méi)有其他的零點(diǎn),而,故. 又因?yàn)?,,均為整?shù),所以是正整數(shù), 從而. 所以.所以,只要取,就有. 【考點(diǎn)】導(dǎo)數(shù)的應(yīng)用 【名師點(diǎn)睛】判斷的單調(diào)性,只需對(duì)函數(shù)求導(dǎo),根據(jù)的導(dǎo)數(shù)的符號(hào)判斷函數(shù)的單調(diào)性,求出單調(diào)區(qū)間,有關(guān)函數(shù)的零點(diǎn)問(wèn)題,先利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,了解函數(shù)的圖象的增減情況,再對(duì)極值點(diǎn)作出相應(yīng)的要求,可控制零點(diǎn)的個(gè)數(shù). 10.【xx浙江,20】(本題滿分15分)已知函數(shù)f(x)=(x–)(). (Ⅰ)求f(x)的導(dǎo)函數(shù); (Ⅱ)求f(x)在區(qū)間上的取值范圍. 【答案】(Ⅰ);(Ⅱ)[0, ]. 【解析】 (Ⅱ)由 解得或. 因?yàn)? x [來(lái)源:] () 1 () () - 0 + 0 - f(x) ↓ 0 ↑ ↓ 又,所以f(x)在區(qū)間[)上的取值范圍是. 【考點(diǎn)】導(dǎo)數(shù)的應(yīng)用 【名師點(diǎn)睛】本題主要考查導(dǎo)數(shù)的兩大方面的應(yīng)用:(一)函數(shù)單調(diào)性的討論:運(yùn)用導(dǎo)數(shù)知識(shí)來(lái)討論函數(shù)單調(diào)性時(shí),首先考慮函數(shù)的定義域,再求出,有的正負(fù),得出函數(shù)的單調(diào)區(qū)間;(二)函數(shù)的最值(極值)的求法:由確認(rèn)的單調(diào)區(qū)間,結(jié)合極值點(diǎn)的定義及自變量的取值范圍,得出函數(shù)極值或最值. 11.【xx高考新課標(biāo)1文數(shù)改編】若函數(shù)在單調(diào)遞增,則a的取值范圍是 . 【答案】 【解析】 試題分析:對(duì)恒成立, 故,即恒成立, 即對(duì)恒成立,構(gòu)造,開(kāi)口向下的二次函數(shù)的最小值的可能值為端點(diǎn)值,故只需保證,解得. 考點(diǎn):三角變換及導(dǎo)數(shù)的應(yīng)用 【名師點(diǎn)睛】本題把導(dǎo)數(shù)與三角函數(shù)結(jié)合在一起進(jìn)行考查,有所創(chuàng)新,求解關(guān)鍵是把函數(shù)單調(diào)性轉(zhuǎn)化為不等式恒成立,再進(jìn)一步轉(zhuǎn)化為二次函數(shù)在閉區(qū)間上的最值問(wèn)題,注意與三角函數(shù)值域或最值有關(guān)的問(wèn)題,要注意弦函數(shù)的有界性. 12.【xx高考四川文科改編】已知函數(shù)的極小值點(diǎn),則= . 【答案】2 【解析】 試題分析:,令得或,易得在上單調(diào)遞減,在上單調(diào)遞增,故極小值為,由已知得. 考點(diǎn):函數(shù)導(dǎo)數(shù)與極值. 【名師點(diǎn)睛】本題考查函數(shù)的極值.在可導(dǎo)函數(shù)中函數(shù)的極值點(diǎn)是方程的解,但是極大值點(diǎn)還是極小值點(diǎn),需要通過(guò)這點(diǎn)兩邊的導(dǎo)數(shù)的正負(fù)性來(lái)判斷,在附近,如果時(shí),,時(shí),則是極小值點(diǎn),如果時(shí),,時(shí),,則是極大值點(diǎn), 13.【xx高考山東理數(shù)】(本小題滿分13分) 已知. (I)討論的單調(diào)性; (II)當(dāng)時(shí),證明對(duì)于任意的成立. 【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析 【解析】 試題分析:(Ⅰ)求的導(dǎo)函數(shù),對(duì)a進(jìn)行分類討論,求的單調(diào)性; (Ⅱ)要證對(duì)于任意的成立,即證,根據(jù)單調(diào)性求解. 試題解析: (Ⅰ)的定義域?yàn)椋? . 當(dāng), 時(shí),,單調(diào)遞增; ,單調(diào)遞減. 當(dāng)時(shí),. (1),, 當(dāng)或時(shí),,單調(diào)遞增; 當(dāng)時(shí),,單調(diào)遞減; (2)時(shí),,在內(nèi),,單調(diào)遞增; (3)時(shí),, 當(dāng)或時(shí),,單調(diào)遞增; 當(dāng)時(shí),,單調(diào)遞減. 綜上所述, 當(dāng)時(shí),函數(shù)在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減; 當(dāng)時(shí),在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在 內(nèi)單調(diào)遞增; 當(dāng)時(shí),在內(nèi)單調(diào)遞增; 當(dāng),在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增. (Ⅱ)由(Ⅰ)知,時(shí), ,, 令,. 則, 由可得,當(dāng)且僅當(dāng)時(shí)取得等號(hào). 又, 設(shè),則在單調(diào)遞減, 因?yàn)椋? 所以在上存在使得 時(shí),時(shí),, 所以函數(shù)在上單調(diào)遞增;在上單調(diào)遞減, 由于,因此,當(dāng)且僅當(dāng)取得等號(hào), 所以, 即對(duì)于任意的恒成立。 考點(diǎn):1.應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值;2.分類討論思想. 【名師點(diǎn)睛】本題主要考查導(dǎo)數(shù)的計(jì)算、應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值、分類討論思想.本題覆蓋面廣,對(duì)考生計(jì)算能力要求較高,是一道難題.解答本題,準(zhǔn)確求導(dǎo)數(shù)是基礎(chǔ),恰當(dāng)分類討論是關(guān)鍵,易錯(cuò)點(diǎn)是分類討論不全面、不徹底、不恰當(dāng),或因復(fù)雜式子變形能力差,而錯(cuò)漏百出.本題能較好的考查考生的邏輯思維能力、基本計(jì)算能力、分類討論思想等. 14.【xx高考天津理數(shù)】 設(shè)函數(shù),,其中 (I)求的單調(diào)區(qū)間; (II) 若存在極值點(diǎn),且,其中,求證:; (Ⅲ)設(shè),函數(shù),求證:在區(qū)間上的最大值不小于. 【答案】(Ⅰ)詳見(jiàn)解析(Ⅱ)詳見(jiàn)解析(Ⅲ)詳見(jiàn)解析 【解析】 試題分析:(Ⅰ)先求函數(shù)的導(dǎo)數(shù):,再根據(jù)導(dǎo)函數(shù)零點(diǎn)是否存在情況,分類討論:①當(dāng)時(shí),有恒成立,所以的單調(diào)增區(qū)間為.②當(dāng)時(shí),存在三個(gè)單調(diào)區(qū)間(Ⅱ)由題意得,計(jì)算可得再由及單調(diào)性可得結(jié)論(Ⅲ)實(shí)質(zhì)研究函數(shù)最大值:主要比較,的大小即可,分三種情況研究①當(dāng)時(shí),,②當(dāng)時(shí),,③當(dāng)時(shí),. 試題解析:(Ⅰ)解:由,可得. 下面分兩種情況討論: (1)當(dāng)時(shí),有恒成立,所以的單調(diào)遞增區(qū)間為. (2)當(dāng)時(shí),令,解得,或. 當(dāng)變化時(shí),,的變化情況如下表: + 0 - 0 + 單調(diào)遞增 極大值 單調(diào)遞減 極小值 單調(diào)遞增 所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,. (Ⅱ)證明:因?yàn)榇嬖跇O值點(diǎn),所以由(Ⅰ)知,且,由題意,得,即, 進(jìn)而. 又 ,且,由題意及(Ⅰ)知,存在唯一實(shí)數(shù)滿足 ,且,因此,所以; (Ⅲ)證明:設(shè)在區(qū)間上的最大值為,表示兩數(shù)的最大值.下面分三種情況同理: (1)當(dāng)時(shí),,由(Ⅰ)知,在區(qū)間上單調(diào)遞減,所以在區(qū)間上的取值范圍為,因此 ,所以. (2)當(dāng)時(shí),,由(Ⅰ)和(Ⅱ)知,,, 所以在區(qū)間上的取值范圍為,因此 . (3)當(dāng)時(shí),,由(Ⅰ)和(Ⅱ)知, ,, 所以在區(qū)間上的取值范圍為,因此 . 綜上所述,當(dāng)時(shí),在區(qū)間上的最大值不小于. 考點(diǎn):導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)、證明不等式 【名師點(diǎn)睛】1.求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟 (1)確定函數(shù)f(x)的定義域(定義域優(yōu)先); (2)求導(dǎo)函數(shù)f′(x); (3)在函數(shù)f(x)的定義域內(nèi)求不等式f′(x)>0或f′(x)<0的解集. (4)由f′(x)>0(f′(x)<0)的解集確定函數(shù)f(x)的單調(diào)增(減)區(qū)間.若遇不等式中帶有參數(shù)時(shí),可分類討論求得單調(diào)區(qū)間. 2.由函數(shù)f(x)在(a,b)上的單調(diào)性,求參數(shù)范圍問(wèn)題,可轉(zhuǎn)化為f′(x)≥0(或f′(x)≤0)恒成立問(wèn)題,要注意“=”是否可以取到. 15.【xx高考北京文數(shù)】(本小題13分) 設(shè)函數(shù) (I)求曲線在點(diǎn)處的切線方程; (II)設(shè),若函數(shù)有三個(gè)不同零點(diǎn),求c的取值范圍; (III)求證:是有三個(gè)不同零點(diǎn)的必要而不充分條件. 【答案】(Ⅰ);(Ⅱ);(III)見(jiàn)解析. 【解析】 試題分析:(Ⅰ)求函數(shù)f(x)的導(dǎo)數(shù),根據(jù),求切線方程; (Ⅱ)根據(jù)導(dǎo)函數(shù)判斷函數(shù)f(x)的單調(diào)性,由函數(shù)有三個(gè)不同零點(diǎn),求c的取值范圍; (III)從兩方面必要性和不充分性證明,根據(jù)函數(shù)的單調(diào)性判斷零點(diǎn)個(gè)數(shù). 試題解析:(I)由,得. 因?yàn)椋? 所以曲線在點(diǎn)處的切線方程為. (II)當(dāng)時(shí),, 所以. 令,得,解得或. 與在區(qū)間上的情況如下: 所以,當(dāng)且時(shí),存在,, ,使得. 由的單調(diào)性知,當(dāng)且僅當(dāng)時(shí),函數(shù)有三個(gè)不同零點(diǎn). (III)當(dāng)時(shí),,, 此時(shí)函數(shù)在區(qū)間上單調(diào)遞增,所以不可能有三個(gè)不同零點(diǎn). 當(dāng)時(shí),只有一個(gè)零點(diǎn),記作. 當(dāng)時(shí),,在區(qū)間上單調(diào)遞增; 當(dāng)時(shí),,在區(qū)間上單調(diào)遞增. 所以不可能有三個(gè)不同零點(diǎn). 綜上所述,若函數(shù)有三個(gè)不同零點(diǎn),則必有. 故是有三個(gè)不同零點(diǎn)的必要條件. 當(dāng),時(shí),,只有兩個(gè)不同 點(diǎn), 所以不是有三個(gè)不同零點(diǎn)的充分條件. 因此是有三個(gè)不同零點(diǎn)的必要而不充分條件. 考點(diǎn):利用導(dǎo)數(shù)研究曲線的切線;函數(shù)的零點(diǎn) 【名師點(diǎn)睛】 1.證明不等式問(wèn)題可通過(guò)作差或作商構(gòu)造函數(shù),然后用導(dǎo)數(shù)證明. 2.求參數(shù)范圍問(wèn)題的常用方法:(1)分離變量;(2)運(yùn)用最值. 3.方程根的問(wèn)題:可化為研究相應(yīng)函數(shù)的圖象,而圖象又歸結(jié)為極值點(diǎn)和單調(diào)區(qū)間的討論. 4.高考中一些不等式的證明需要通過(guò)構(gòu)造函數(shù),轉(zhuǎn)化為利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性或求最值,從而證得不等式,而如何根據(jù)不等式的結(jié)構(gòu)特征構(gòu)造一個(gè)可導(dǎo)函數(shù)是用導(dǎo)數(shù)證明不等式的關(guān)鍵. 16.【xx高考新課標(biāo)Ⅲ文數(shù)】設(shè)函數(shù). (I)討論的單調(diào)性; (II)證明當(dāng)時(shí),; (III)設(shè),證明當(dāng)時(shí),. 【答案】(Ⅰ)當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減;(Ⅱ)見(jiàn)解析;(Ⅲ)見(jiàn)解析. 【解析】 試題分析:(Ⅰ)首先求出導(dǎo)函數(shù),然后通過(guò)解不等式或可確定函數(shù)的單調(diào)性(Ⅱ)左端不等式可利用(Ⅰ)的結(jié)論證明,右端將左端的換為即可證明;(Ⅲ)變形所證不等式,構(gòu)造新函數(shù),然后通過(guò)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性來(lái)處理. 試題解析:(Ⅰ)由題設(shè),的定義域?yàn)?,,令,解? 當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減. ………4分 (Ⅱ)由(Ⅰ)知,在處取得最大值,最大值為, 所以當(dāng)時(shí),, 故當(dāng)時(shí),,,即. ………………7分 (Ⅲ)由題設(shè),設(shè),則. 令,解得. 當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減. ……………9分 由(Ⅱ)知,,故.又,故當(dāng)時(shí),, 所以當(dāng)時(shí),. ………………12分 考點(diǎn):1、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;2、不等式的證明與解法. 【思路點(diǎn)撥】求解導(dǎo)數(shù)中的不等式證明問(wèn)題可考慮:(1)首先通過(guò)利用研究函數(shù)的單調(diào)性,再利用單調(diào)性進(jìn)行證明;(2)根據(jù)不等式結(jié)構(gòu)構(gòu)造新函數(shù),通過(guò)求導(dǎo)研究新函數(shù)的單調(diào)性或最值來(lái)證明. 17.【xx高考福建,文12】“對(duì)任意,”是“”的_______________條件.(在充分而不必要條件、必要而不充分條件、充分必要條件和既不充分也不必要條件四個(gè)中選擇一個(gè)填空) 【答案】必要而不充分條件 【解析】當(dāng)時(shí),,構(gòu)造函數(shù),則.故在單調(diào)遞增,故,則; 當(dāng)時(shí),不等式等價(jià)于,構(gòu)造函數(shù),則,故在遞增,故,則.綜上所述,“對(duì)任意,”是“”的必要不充分條件. 18.【xx高考北京,文19】(本小題滿分13分)設(shè)函數(shù),. (I)求的單調(diào)區(qū)間和極值; (II)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn). 【解析】(Ⅰ)由,()得.由解得. 與在區(qū)間上的情況如下: 所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;在處取得極小值. (Ⅱ)由(Ⅰ)知,在區(qū)間上的最小值為.因?yàn)榇嬖诹泓c(diǎn),所以,從而.當(dāng)時(shí),在區(qū)間上單調(diào)遞減,且,所以是在區(qū)間上的唯一零點(diǎn).當(dāng)時(shí),在區(qū)間上單調(diào)遞減,且,,所以在區(qū)間上僅有一個(gè)零點(diǎn).綜上可知,若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn). 19.【xx高考山東,文20】設(shè)函數(shù). 已知曲線 在點(diǎn)處的切線與直線平行. (Ⅰ)求的值; (Ⅱ)是否存在自然數(shù),使得方程在內(nèi)存在唯一的根?如果存在,求出;如果不存在,請(qǐng)說(shuō)明理由; (Ⅲ)設(shè)函數(shù)(表示,中的較小值),求的最大值. 【解析】(I)由題意知,曲線在點(diǎn)處的切線斜率為,所以,又所以. (II)時(shí),方程在內(nèi)存在唯一的根.設(shè) 當(dāng)時(shí),.又所以存在,使. 因?yàn)樗援?dāng)時(shí),,當(dāng)時(shí),, 所以當(dāng)時(shí),單調(diào)遞增.所以時(shí),方程在內(nèi)存在唯一的根. (III)由(II)知,方程在內(nèi)存在唯一的根,且時(shí),,時(shí),,所以.當(dāng)時(shí),若 若由可知故當(dāng)時(shí),由可得時(shí),單調(diào)遞增;時(shí),單調(diào)遞減;可知且.綜上可得函數(shù)的最大值為. 【xx年高考命題預(yù)測(cè)】 導(dǎo)數(shù)的應(yīng)用是高考的熱點(diǎn),年年都出題,題型既有選擇題、填空題,又有解答題,難度中檔左右,解答題作為把關(guān)題存在,在考查導(dǎo)數(shù)的概念及其運(yùn)算的基礎(chǔ)上,又注重考查解析幾何的相關(guān)知識(shí).導(dǎo)數(shù)是研究函數(shù)的工具,導(dǎo)數(shù)進(jìn)入新教材之后,給函數(shù)問(wèn)題注入了生機(jī)和活力,開(kāi)辟了許多解題新途徑,拓展了高考對(duì)函數(shù)問(wèn)題的命題空間.所以把導(dǎo)數(shù)與函數(shù)綜合在一起是順理成章的事情,對(duì)函數(shù)的命題已不再拘泥于一次函數(shù),二次函數(shù),反比例函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù)等,對(duì)研究函數(shù)的目標(biāo)也不僅限于求定義域,值域,單調(diào)性,奇偶性,對(duì)稱性,周期性等,而是把高次多項(xiàng)式函數(shù),分式函數(shù),指數(shù)型,對(duì)數(shù)型函數(shù),以及初等基本函數(shù)的和、差、積、商都成為命題的對(duì)象,試題的命制往往融函數(shù),導(dǎo)數(shù),不等式,方程等知識(shí)于一體,通過(guò)演繹證明,運(yùn)算推理等理性思維,解決單調(diào)性,極值,最值,切線,方程的根,參數(shù)的范圍等問(wèn)題,這類題難度很大,綜合性強(qiáng),內(nèi)容新,背景新,方法新,是高考命題的豐富寶藏.解題中需用到函數(shù)與方程思想、分類討論思想、數(shù)形結(jié)合思想、轉(zhuǎn)化與劃歸思想.在xx年高考仍將以導(dǎo)數(shù)的幾何意義為背景設(shè)置成的導(dǎo)數(shù)的綜合題為主要考點(diǎn).也有可能利用導(dǎo)數(shù)的幾何意義出一道中等難度試題,如求切線,或求參數(shù)值,重點(diǎn)考查運(yùn)算及數(shù)形結(jié)合能力,以及構(gòu)造新函數(shù)等能力. 【xx年高考考點(diǎn)定位】 高考對(duì)導(dǎo)數(shù)的應(yīng)用的考查主要有導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)判斷單調(diào)性,求最值,證明不等式,證明恒成立,以及存在性問(wèn)題等,難度較大,往往作為把關(guān)題存在. 考點(diǎn)一、借助導(dǎo)數(shù)研究函數(shù)單調(diào)性 【備考知識(shí)梳理】一般地,函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)有如下關(guān)系:在某個(gè)區(qū)間內(nèi),如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞減; 【規(guī)律方法技巧】求函數(shù)單調(diào)區(qū)間的一般步驟.(1)求函數(shù)的導(dǎo)數(shù)(2)令解不等式,得的范圍就是單調(diào)增區(qū)間;令解不等式,得的范圍就是單調(diào)減區(qū)間(3)對(duì)照定義域得出結(jié)論. 【考點(diǎn)針對(duì)訓(xùn)練】 1.若函數(shù)f (x)=mx2+lnx-2x在定義域內(nèi)是增函數(shù),則實(shí)數(shù)m的取值范圍是_________. 【答案】[,+∞) 【解析】 f (x)=2mx+-2≥0對(duì)x>0恒成立,2mx2+1-2x≥0∴2m≥=-+,令t=>0∴2m≥-t2+2t,∵max=1,∴2m≥1,∴m≥. 2.已知函數(shù). (1)當(dāng)時(shí),求的單調(diào)減區(qū)間; (2)若方程恰好有一個(gè)正根和一個(gè)負(fù)根,求實(shí)數(shù)的最大值. 【解析】(1)當(dāng)時(shí), ,當(dāng)時(shí),,由,解得,所以的單調(diào)減區(qū)間為,當(dāng)時(shí),,由,解得或,所以的單調(diào)減區(qū)間為, 綜上:的單調(diào)減區(qū)間為,. (2) 當(dāng)時(shí),,則,令,得或, x 0 + 0 - 0 + ↗ 極大值 ↘ 極小值 ↗ 所以有極大值,極小值,當(dāng)時(shí), 同(1)的討論可得,在上增,在上減,在上增,在上減,在上增,且函數(shù)有兩個(gè)極大值點(diǎn), , , 且當(dāng)時(shí),, 所以若方程恰好有正根, 則(否則至少有二個(gè)正根).又方程恰好有一個(gè)負(fù)根,則.令,則, 所以在時(shí)單調(diào)減,即,等號(hào)當(dāng)且僅當(dāng)時(shí)取到.所以,等號(hào)當(dāng)且僅當(dāng)時(shí)取到.且此時(shí),即,所以要使方程恰好有一個(gè)正根和一個(gè)負(fù)根,的最大值為. 考點(diǎn)二、借助導(dǎo)數(shù)研究函數(shù)的極值 【備考知識(shí)梳理】若滿足,且在的兩側(cè)的導(dǎo)數(shù)異號(hào),則是的極值點(diǎn),是極值,并且如果在兩側(cè)滿足“左正右負(fù)”,則是的極大值點(diǎn),是極大值;如果在兩側(cè)滿足“左負(fù)右正”,則是的極小值點(diǎn),是極小值 【規(guī)律方法技巧】求函數(shù)的極值的步驟:(1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f′(x) .(2)求方程f′(x)=0的根.(3)用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開(kāi)區(qū)間,并列成表格.檢查f′(x)在方程根左右的值的符號(hào),如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值;如果左右不改變符號(hào),那么f(x)在這個(gè)根處無(wú)極值. 【考點(diǎn)針對(duì)訓(xùn)練】 1.已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù) (1)若函數(shù)的圖像在處的切線與直線垂直,求的值. (2)關(guān)于的不等式在上恒成立,求的取值范圍. (3)討論極值點(diǎn)的個(gè)數(shù). 【答案】(1)(2)(3)當(dāng)時(shí),有且僅有一個(gè)極值點(diǎn),當(dāng)時(shí),有三個(gè)極值點(diǎn). 【解析】 試題分析:(1)利用導(dǎo)數(shù)幾何意義得,而,因此(2)不等式恒成立問(wèn)題,一般利用變量分離,轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值:,因此(3)先求函數(shù)導(dǎo)數(shù):,這是一個(gè)三次函數(shù)與指數(shù)函數(shù)的乘積,因此導(dǎo)函數(shù)的零點(diǎn)為一個(gè)或三個(gè),即只有一個(gè)極值點(diǎn)或有三個(gè)極值點(diǎn).再分類討論:當(dāng)與x軸有且僅有一個(gè)交點(diǎn)時(shí),分兩種情形,一是為單調(diào)遞增函數(shù)(無(wú)極值),二是極值同號(hào).當(dāng)與x軸有且僅有三個(gè)交點(diǎn)時(shí),極值異號(hào). 試題解析:(1) 由題意,, 因?yàn)榈膱D象在處的切線與直線垂直, 所以,解得. (2) 法一:由,得, 即對(duì)任意恒成立, 即對(duì)任意恒成立, 因?yàn)?,所以? 記,因?yàn)樵谏蠁握{(diào)遞增,且, 所以,即的取值范圍是. 法二:由,得, 即在上恒成立, 因?yàn)榈葍r(jià)于, ①當(dāng)時(shí),恒成立, 所以原不等式的解集為,滿足題意. ②當(dāng)時(shí),記,有, 所以方程必有兩個(gè)根,且, 原不等式等價(jià)于,解集為,與題設(shè)矛盾, 所以不符合題意. 綜合①②可知,所求的取值范圍是. (3) 因?yàn)橛深}意,可得, 所以只有一個(gè)極值點(diǎn)或有三個(gè)極值點(diǎn). 令, ①若有且只有一個(gè)極值點(diǎn),所以函數(shù)的圖象必穿過(guò)x軸且只穿過(guò)一次, 即為單調(diào)遞增函數(shù)或者極值同號(hào). ⅰ)當(dāng)為單調(diào)遞增函數(shù)時(shí),在上恒成立,得…12分 ⅱ)當(dāng)極值同號(hào)時(shí),設(shè)為極值點(diǎn),則, 由有解,得,且, 所以, 所以 , 同理,, 所以, 化簡(jiǎn)得, 所以,即, 所以. 所以,當(dāng)時(shí),有且僅有一個(gè)極值點(diǎn); ②若有三個(gè)極值點(diǎn),所以函數(shù)的圖象必穿過(guò)x軸且穿過(guò)三次,同理可得; 綜上,當(dāng)時(shí),有且僅有一個(gè)極值點(diǎn), 當(dāng)時(shí),有三個(gè)極值點(diǎn). 2.函數(shù)在區(qū)間上存在極值點(diǎn),則實(shí)數(shù)的取值范圍為 . 【答案】; 考點(diǎn)三、借助導(dǎo)數(shù)研究函數(shù)最值 【備考知識(shí)梳理】求函數(shù)最值的步驟:(1)求出在上的極值.(2)求出端點(diǎn)函數(shù)值. (3)比較極值和端點(diǎn)值,確定最大值或最小值. 【規(guī)律方法技巧】 1、利用導(dǎo)數(shù)研究函數(shù)的最值問(wèn)題是要養(yǎng)成列表的習(xí)慣,這樣能使解答過(guò)程直觀條理; 2、會(huì)利用導(dǎo)函數(shù)的圖象提取相關(guān)信息; 3、極值點(diǎn)不一定是最值點(diǎn),最值點(diǎn)也不一定是極值點(diǎn),但若函數(shù)在開(kāi)區(qū)間內(nèi)只有一個(gè)極值點(diǎn),則這個(gè)極值點(diǎn)也一定是最值點(diǎn). 【考點(diǎn)針對(duì)訓(xùn)練】 1.已知函數(shù),. (1)求的單調(diào)增區(qū)間和最小值; (2)若函數(shù)與函數(shù)在交點(diǎn)處存在公共切線,求實(shí)數(shù)的值; (3)若時(shí),函數(shù)的圖象恰好位于兩條平行直線,之間,當(dāng)與間的距離最小時(shí),求實(shí)數(shù)的值. 【答案】(1);(2) ;(3) 【解析】 試題分析:(1)求出的導(dǎo)數(shù),求得單調(diào)區(qū)間和極值,也為最值;(2)分別求出導(dǎo)數(shù),設(shè)公切點(diǎn)處的橫坐標(biāo)為,分別求出切線方程,再聯(lián)立解方程,即可得到a;(3)求出兩直線的距離,再令,求出導(dǎo)數(shù),運(yùn)用單調(diào)性即可得到最小值,進(jìn)而說(shuō)明當(dāng)d最小時(shí),. 試題解析:(1)因?yàn)?,由,得? 所以的單調(diào)增區(qū)間為, 又當(dāng)時(shí),,則在上單調(diào)減, 當(dāng)時(shí),,則在上單調(diào)增, 所以的最小值為. (2)因?yàn)?,? 設(shè)共切點(diǎn)處的橫坐標(biāo)為,則與相切的直線方程為:, 與相切的直線方程為:, 所以, 解之得,由(1)知,所以. (3)若直線過(guò),則k=2,此時(shí)有(為切點(diǎn)處的橫坐標(biāo)), 所以, 當(dāng)時(shí),有 ,且, 所以兩平行線間的距離 令 ,因?yàn)?, 所以當(dāng)時(shí),,則在上單調(diào)減; 當(dāng)時(shí),,則在 上單調(diào)增, 所以有最小值h(x)=0,即函數(shù)的圖象均在 的上方, 令 , 則 , 所以當(dāng)時(shí),, 所以當(dāng)d最小時(shí), . 2.已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù)),,. ⑴記函數(shù),當(dāng)時(shí),求的單調(diào)區(qū)間; ⑵若對(duì)于任意的,,,均有成立,求實(shí)數(shù) 的取值范圍. 【答案】(1)單調(diào)增區(qū)間為:,,減區(qū)間為;(2). 【解析】 試題分析:(1)求單調(diào)區(qū)間的方法是求出的解,確定(或)的取值區(qū)間,即函數(shù)的單調(diào)區(qū)間,此可用列表方法得出(同時(shí)可得出極值);(2)本小題不等式或有絕對(duì)值符號(hào),有兩個(gè)參數(shù),由于函數(shù)是增函數(shù),因此設(shè),則有,原問(wèn)題等價(jià)于恒成立, 分兩個(gè)問(wèn)題,恒成立和恒成立,前面轉(zhuǎn)化為,可以考慮函數(shù)在上是單調(diào)遞增的,后面一個(gè)轉(zhuǎn)化為,可以考慮函數(shù)在上是單調(diào)遞增的. 試題解析:⑴, , 得或, 列表如下:(,) 極大值 [來(lái)源:] 極小值 ……………………………………………………………………………………4分 的單調(diào)增區(qū)間為:,,減區(qū)間為; ⑵設(shè),是單調(diào)增函數(shù),, ; ①由得:, 即函數(shù)在上單調(diào)遞增, 在上恒成立, 在上恒成立; 令,, 時(shí),;時(shí),; , ; ②由得:, 即函數(shù)在上單調(diào)遞增, 在上恒成立, 在上恒成立; 函數(shù)在上單調(diào)遞減,當(dāng)時(shí),, , 綜上所述,實(shí)數(shù)的取值范圍為. 【兩年模擬詳解析】 1. 【蘇北三市(連云港、徐州、宿遷)xx屆高三年級(jí)第三次調(diào)研考試】已知函數(shù),. (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間; (2)設(shè)函數(shù),.若函數(shù)的最小值是,求的值; (3)若函數(shù),的定義域都是,對(duì)于函數(shù)的圖象上的任意一點(diǎn),在函數(shù)的圖象上都存在一點(diǎn),使得,其中是自然對(duì)數(shù)的底數(shù),為坐標(biāo)原點(diǎn),求的取值范圍. 【答案】(1)見(jiàn)解析(2)1(3) 【解析】 解:(1) 當(dāng)時(shí),,. 因?yàn)樵谏蠁握{(diào)增,且, 所以當(dāng)時(shí),;當(dāng)時(shí),. 所以函數(shù)的單調(diào)增區(qū)間是. (2),則,令得, 當(dāng)時(shí),,函數(shù)在上單調(diào)減; 當(dāng)時(shí),,函數(shù)在上單調(diào)增. 所以. ①當(dāng),即時(shí), 函數(shù)的最小值, 即,解得或(舍),所以; ②當(dāng),即時(shí), 函數(shù)的最小值,解得(舍). 綜上所述,的值為1. (3)由題意知,,. 考慮函數(shù),因?yàn)樵谏虾愠闪ⅲ? 所以函數(shù)在上單調(diào)增,故. 所以,即在上恒成立, 即在上恒成立. 設(shè),則在上恒成立, 所以在上單調(diào)減,所以. 設(shè), 則在上恒成立, 所以在上單調(diào)增,所以. 綜上所述,的取值范圍為. 2. 【xx學(xué)年度蘇錫常鎮(zhèn)四市高三教學(xué)情況調(diào)研(二)】已知函數(shù),,為實(shí)數(shù),,為自然對(duì)數(shù)的底數(shù),. (1)當(dāng),時(shí),設(shè)函數(shù)的最小值為,求的最大值; (2)若關(guān)于的方程在區(qū)間上有兩個(gè)不同實(shí)數(shù)解,求的取值范圍. 【答案】(1)(2) 【解析】 解:(1)當(dāng)時(shí),函數(shù), 則 , 令,得,因?yàn)闀r(shí),, 所以 , 令, 則,令,得, 且當(dāng)時(shí),有最大值1, 所以的最大值為1(表格略),(分段寫(xiě)單調(diào)性即可),此時(shí). (2)由題意得,方程在區(qū)間上有兩個(gè)不同實(shí)數(shù)解, 所以在區(qū)間上有兩個(gè)不同的實(shí)數(shù)解, 即函數(shù)圖象與函數(shù)圖象有兩個(gè)不同的交點(diǎn), 因?yàn)椋?,得? 所以當(dāng)時(shí),, 當(dāng)時(shí),, 所以,滿足的關(guān)系式為,即的取值范圍為. 3. 【南京市、鹽城市xx屆高三年級(jí)第一次模擬】(本小題滿分16分) 設(shè)函數(shù),() (1)當(dāng)時(shí),解關(guān)于的方程(其中為自然對(duì)數(shù)的底數(shù)); (2)求函數(shù)的單調(diào)增區(qū)間; (3)當(dāng)時(shí),記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說(shuō)明理由. (參考數(shù)據(jù):,) 【答案】(Ⅰ)或(Ⅱ)當(dāng)時(shí),的增區(qū)間為;當(dāng)時(shí),的增區(qū)間為;時(shí),的增區(qū)間為.(III)的最小值為. 【解析】 解:(1)當(dāng)時(shí),方程即為,去分母,得 ,解得或, …………2分 故所求方程的根為或. ………4分 (2)因?yàn)椋? 所以(), ……6分 ①當(dāng)時(shí),由,解得; ②當(dāng)時(shí),由,解得; ③當(dāng)時(shí),由,解得; ④當(dāng)時(shí),由,解得; ⑤當(dāng)時(shí),由,解得. 綜上所述,當(dāng)時(shí),的增區(qū)間為; 當(dāng)時(shí),的增區(qū)間為; 時(shí),的增區(qū)間為. ………10分 (3)方法一:當(dāng)時(shí),,, 所以單調(diào)遞增,,, 所以存在唯一,使得,即, ……………12分 當(dāng)時(shí),,當(dāng)時(shí),, 所以, 記函數(shù),則在上單調(diào)遞增, ……14分 所以,即, 由,且為整數(shù),得, 所以存在整數(shù)滿足題意,且的最小值為. ………16分 方法二:當(dāng)時(shí),,所以, 由得,當(dāng)時(shí),不等式有解, ……………12分 下證:當(dāng)時(shí),恒成立,即證恒成立. 顯然當(dāng)時(shí),不等式恒成立, 只需證明當(dāng)時(shí),恒成立. 即證明.令, 所以,由,得, ………14分 當(dāng),;當(dāng),; 所以. 所以當(dāng)時(shí),恒成立. 綜上所述,存在整數(shù)滿足題意,且的最小值為. .……………16分 4. 【鎮(zhèn)江市xx屆高三年級(jí)第一次模擬】已知函數(shù),(為常數(shù)). (1)若函數(shù)與函數(shù)在處有相同的切線,求實(shí)數(shù)的值; (2)若,且,證明:; (3)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍. 【答案】(1)(2)詳見(jiàn)解析(3) 【解析】 解:(1),則且. ……1分 所以函數(shù)在處的切線方程為:, ……2分 從而,即. ……4分 (2)由題意知:設(shè)函數(shù),則. ……5分 設(shè),從而對(duì)任意恒成立, ……6分 所以,即, 因此函數(shù)在上單調(diào)遞減, ……7分 即, 所以當(dāng)時(shí),成立. ……8分 設(shè)函數(shù), 從而對(duì)任意,不等式恒成立. 又, 當(dāng),即恒成立時(shí), 函數(shù)單調(diào)遞減. ……10分 設(shè),則, 所以,即,符合題意; ……12分 當(dāng)時(shí),恒成立,此時(shí)函數(shù)單調(diào)遞增. 于是,不等式對(duì)任意恒成立,不符合題意; ……13分 當(dāng)時(shí),設(shè), 則 ……14分 當(dāng)時(shí),,此時(shí)單調(diào)遞增, 所以, 故當(dāng)時(shí),函數(shù)單調(diào)遞增. 于是當(dāng)時(shí),成立,不符合題意; ……15分 綜上所述,實(shí)數(shù)的取值范圍為:. ……16分 5. 【xx年第二次全國(guó)大聯(lián)考江蘇卷】(本小題滿分16分)設(shè)函數(shù) (1)若不等式對(duì)恒成立,求的值; (2)若在內(nèi)有兩個(gè)極值點(diǎn),求負(fù)數(shù)的取值范圍; (3)已知,若對(duì)任意實(shí)數(shù),總存在實(shí)數(shù),使得成立,求正實(shí)數(shù)的取值集合. 【解析】解(1)若 ,則當(dāng)時(shí),,不合題意; 若 ,則當(dāng)時(shí),,不合題意; 若 ,則當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,滿足題意,因此的值為 ……………4分 (2), 令,則 所以在上單調(diào)遞減,在上單調(diào)遞增,因此………6分 (i)當(dāng)時(shí), 在內(nèi)至多有一個(gè)極值點(diǎn); (ii) 當(dāng)時(shí),由于 所以 ,而,因此在上無(wú)零點(diǎn),在上有且僅有一個(gè)零點(diǎn),從而在上有且僅有一個(gè)零點(diǎn),在內(nèi)有且僅有一個(gè)極值點(diǎn);………………………8分 (iii)當(dāng)時(shí),因此在上有且僅有一個(gè)零點(diǎn),在上有且僅有一個(gè)零點(diǎn),從而在上有且僅有兩個(gè)零點(diǎn),在內(nèi)有且僅有兩個(gè)極值點(diǎn); 綜上負(fù)數(shù)的取值范圍為………………………10分 (3)因?yàn)閷?duì)任意實(shí)數(shù),總存在實(shí)數(shù),使得成立,所以函數(shù)的值域?yàn)椋? 在上是增函數(shù),其值域?yàn)?………………11分 對(duì)于函數(shù),當(dāng)時(shí),, 當(dāng)時(shí),,函數(shù)在上為單調(diào)減函數(shù), 當(dāng)時(shí),,函數(shù)在上為單調(diào)增函數(shù). 若,則函數(shù)在上是增函數(shù),在上是減函數(shù),其值域?yàn)椋? 又,不符合題意,舍去;………………13分 若,則函數(shù)在上是增函數(shù),值域?yàn)椋? 由題意得,即 ① 記則 當(dāng)時(shí),,在上為單調(diào)減函數(shù). 當(dāng)時(shí),,在上為單調(diào)增函數(shù), 所以,當(dāng)時(shí),有最小值, 從而恒成立(當(dāng)且僅當(dāng)時(shí),) ②………………15分 由①②得,,所以 綜上所述,正實(shí)數(shù)的取值集合為.………………16分 6. 【xx年第三次全國(guó)大聯(lián)考江蘇卷】(本小題滿分16分) 已知函數(shù),常數(shù) (1)若,求函數(shù)在點(diǎn)處切線方程; (2)若對(duì),恒有,求的取值范圍; (3)若函數(shù)有兩個(gè)零點(diǎn)且,求實(shí)數(shù)的取值范圍. 【解析】(1)由得,所以當(dāng)時(shí),, 因此切線斜率為,切線方程為即.………4分 (2)由題意得在上單調(diào)遞減. 當(dāng)時(shí),;當(dāng)時(shí),,皆為上單調(diào)增函數(shù),不合題意; 當(dāng)時(shí),. 當(dāng)時(shí),,,在上單調(diào)遞增; 當(dāng)時(shí),,,在上單調(diào)遞減; 所以,即的取值范圍為………………………9分 (3)由(2)知當(dāng)時(shí),皆為上單調(diào)增函數(shù),至多一個(gè)零點(diǎn),不合題意. 當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減;所以取最小值. 若,則至多一個(gè)零點(diǎn),因此即解得 當(dāng)時(shí),,而,在上單調(diào)遞減,所以在上有且僅有一個(gè)零點(diǎn);而,,在上單調(diào)遞增,所以在上有且僅有一個(gè)零點(diǎn);所以有兩個(gè)零點(diǎn). 當(dāng)時(shí),,而,在上單調(diào)遞減,所以在上有且僅有一個(gè)零點(diǎn);,因?yàn)? ,所以,即,又,在上單調(diào)遞增,所以在上有且僅有一個(gè)零點(diǎn);因此有兩個(gè)零點(diǎn). 綜上,實(shí)數(shù)的取值范圍為………………………16分 7. 【xx年第一次全國(guó)大聯(lián)考江蘇卷】(本小題滿分16分)設(shè)函數(shù),其中,且. (1) 求值; (2) 若,為自然對(duì)數(shù)的底數(shù),求證:當(dāng)時(shí),; (3) 若函數(shù)為上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍. 【解析】(1)依題意.……………2分 (2)記,則, 設(shè),則當(dāng)時(shí),因此函數(shù)在上是單調(diào)增函數(shù),且, 所以由零點(diǎn)存在定理知,在上存在唯一的零點(diǎn),……………5分 令得, 列表: ↘ 極小值 ↗ 所以,故……………8分 (3)依題意,,記. 當(dāng)時(shí), ①若為上的單調(diào)增函數(shù),則,即在上恒成立 因?yàn)闉樯系膯握{(diào)增函數(shù) 所以,從而,舍去. ……………10分 ②若為上的單調(diào)減函數(shù),則,即在上恒成立 因?yàn)椋? 所以在上不恒成立,舍去. ……………12分 當(dāng)時(shí), ①若為上的單調(diào)增函數(shù),則,即在上恒成立 由得, 列表: + 0 - ↗ 極大值 ↘ 所以 所以,即,故……………14分 ②若為上的單調(diào)減函數(shù),則,即在上恒成立 由①知,當(dāng)時(shí),;當(dāng), 所以,不成立,舍去 綜上,……………16分 8. 【xx學(xué)年度蘇錫常鎮(zhèn)四市高三教學(xué)情況調(diào)研(一)】已知函數(shù)(為正實(shí)數(shù),且為常數(shù)). (1)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍; (2)若不等式恒成立,求實(shí)數(shù)的取值范圍. 解:(1),. ……1分 因在上單調(diào)遞增,則,恒成立. 令,則, ……2分 x - + 減 極小值 增 因此,,即. ……6分 (2)當(dāng)時(shí),由(1)知,當(dāng)時(shí),單調(diào)遞增. ……7分 又,當(dāng),;當(dāng)時(shí),. ……9分 故不等式恒成立. ……10分 若,, 設(shè),令,則. …12分 當(dāng)時(shí),,單調(diào)遞減,則, 則,所以當(dāng)時(shí),單調(diào)遞減, ……14分 則當(dāng)時(shí),,此時(shí),矛盾. ……15分 因此,. ……16分 9. 【xx年高考原創(chuàng)押題預(yù)測(cè)卷01(江蘇卷)】(本小題滿分16分) 已知函數(shù). (1)求曲線與直線垂直的切線方程; (2)求的單調(diào)遞減區(qū)間; (3)若存在,使函數(shù)成立,求實(shí)數(shù)的取值范圍. 【答案】(1);(2)減區(qū)間為和;(3). 【解析】 (1)由已知,2分 設(shè)切點(diǎn)坐標(biāo)為,令,解得,所以,因此切線方程為,即;4分 (2)函數(shù)的定義域?yàn)椋? ,由,解得或, 所以函數(shù)的單調(diào)遞減區(qū)間為和.8分 (3)因?yàn)椋? 由已知,若存在使函數(shù)成立, 則只需滿足當(dāng)時(shí),即可.9分 又, 則,10分 ①若,則在上恒成立, 所以在上單調(diào)遞增, , ∴,又∵,∴.13分 ②若,則在上單調(diào)遞減,在上單調(diào)遞增, 所以在上的最小值是,15分 又∵,而,所以一定滿足條件, 綜上所述,的取值范圍是.16分 10. 【xx年高考原創(chuàng)押題預(yù)測(cè)卷02(江蘇卷)】(本小題滿分16分)已知函數(shù). (Ⅰ)若函數(shù)的最小值為,求的值; (Ⅱ)設(shè),求函數(shù)的單調(diào)區(qū)間; (Ⅲ)設(shè)函數(shù)與函數(shù)的圖像的一個(gè)公共點(diǎn)為,若過(guò)點(diǎn)有且僅有一條公切線,求點(diǎn)的坐標(biāo)及實(shí)數(shù)的值. (Ⅱ)因(),故----------(5分) ①若,則,函數(shù)在上單調(diào)遞增;--------(6分) ②若,則當(dāng),即,也即時(shí),在時(shí),,函數(shù)單調(diào)遞減;在時(shí),,函數(shù)單調(diào)遞增;在時(shí),,函數(shù)單調(diào)遞減;------------------------------------------------------(8分) 當(dāng),即,也即時(shí),在時(shí),,函數(shù)單調(diào)遞減;在時(shí),,函數(shù)單調(diào)遞增;在時(shí),,函數(shù)單調(diào)遞減.---------------------------------------------------(10分) 綜上: 當(dāng),函數(shù)的單調(diào)遞增區(qū)間是; 當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是和 當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是; 當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是和.--------(11分) (Ⅱ)設(shè)點(diǎn),因,故,即;--------(12分) 又設(shè)切線方程為,將代入可得;將代入可得,借助切線唯一可得,即,也即,所以方程只有一個(gè)實(shí)數(shù)根.---------------------------(13分) 構(gòu)造函數(shù),顯然函數(shù)只有一個(gè)零點(diǎn). 下證當(dāng)與時(shí),函數(shù)都是單調(diào)函數(shù),且都沒(méi)有零點(diǎn). -----------(14分) 因,故當(dāng)時(shí),,函數(shù)單調(diào)遞增;且,故在區(qū)間上無(wú)零點(diǎn);當(dāng)時(shí), ,函數(shù)單調(diào)遞減;且,故在區(qū)間上無(wú)零點(diǎn).即方程只有一個(gè)實(shí)數(shù)根,所以可得,由可得.-----------------(16分) 11. 【xx年高考原創(chuàng)押題預(yù)測(cè)卷03(江蘇卷)】(本小題滿分14分)某地政府為科技興市,欲將如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地規(guī)劃建成一個(gè)矩形的高科技工業(yè)園區(qū).已知,曲線段是以點(diǎn)為頂點(diǎn)且開(kāi)口向上的拋物線的一段,如果要使矩形的相鄰兩邊分別落在上,且一個(gè)頂點(diǎn)落在曲線段上,問(wèn)應(yīng)如何規(guī)劃才能使矩形工業(yè)園區(qū)的用地面積最大?并求出最大用地面積. 【解析】如圖,以所在的直線為軸,過(guò)點(diǎn)且垂直于的直線為軸,建立如圖所示的平面直角坐標(biāo)系.依題意設(shè)拋物線方程為,由題意點(diǎn),代入可得,則曲線段的方程為.-----------------(3分) 設(shè)是曲線段上的任意一點(diǎn),如圖,則,所以該工業(yè)園區(qū)的面積,---------------(5分) 則,故當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取最大值,----------------------------(10分) ,此時(shí).-------(12) 答:當(dāng)工業(yè)園區(qū)規(guī)劃成長(zhǎng)為,寬為時(shí),園區(qū)的面積最大,其最大值為.-----(14分) 12. 【xx年高考原創(chuàng)押題預(yù)測(cè)卷03(江蘇卷)】(本小題滿分16分)設(shè). (Ⅰ) 求函數(shù)的單調(diào)區(qū)間; (Ⅱ) 若函數(shù)有兩個(gè)零點(diǎn),且,求實(shí)數(shù)的取值范圍; (Ⅲ) 若函數(shù)有兩個(gè)零點(diǎn),且,證明:. 【解析】(Ⅰ)首先,函數(shù)定義域?yàn)?,因,則當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;------(3分) 當(dāng),且時(shí),,函數(shù)在上單調(diào)遞減;時(shí),,函數(shù)在上單調(diào)遞增,--------------------------------------------------(4分) 故當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是;當(dāng)時(shí),函數(shù)的遞減區(qū)間是,單調(diào)遞增區(qū)間是.-------------------------------------------------------------(5分) (Ⅱ)由題設(shè)有兩個(gè)零點(diǎn),顯然,故,記,當(dāng)時(shí),單調(diào)增;當(dāng)時(shí),單調(diào)減.-------------------------(7分) 所以當(dāng),即時(shí),函數(shù)有兩個(gè)零點(diǎn),所求實(shí)數(shù)的取值范圍是.----(9分) (Ⅲ)構(gòu)造函數(shù),-----(12分) 則當(dāng)時(shí),單調(diào)增,所以,即,------(14分) 又由(Ⅱ)知,函數(shù)有兩個(gè)零點(diǎn),就是方程的兩個(gè)根,因此滿足,所以,且,又時(shí),單調(diào)增,所以,從而有----------------------(16分) 13. 【南京市、鹽城市xx屆高三年級(jí)第二次模擬】(本小題滿分16分) 已知函數(shù)f (x)=ex-ax-1,其中e為自然對(duì)數(shù)的底數(shù),a∈R. (1)若a=e,函數(shù)g (x)=(2-e)x. ①求函數(shù)h(x)=f (x)-g (x)的單調(diào)區(qū)間; ②若函數(shù)F(x)=的值域?yàn)镽,求實(shí)數(shù)m的取值范圍; (2)若存在實(shí)數(shù)x1,x2∈[0,2],使得f(x1)=f(x2),且|x1-x2|≥1, 求證:e-1≤a≤e2-e. 解:(1)當(dāng)a=e時(shí),f (x)=ex-ex-1. ① h (x)=f (x)-g (x)=ex-2x-1,h′ (x)=ex-2. 由h′ (x)>0得x>ln2,由h′ (x)<0得x<ln2. 所以函數(shù)h(x)的單調(diào)增區(qū)間為 (ln2,+∞),單調(diào)減區(qū)間為 (-∞,ln2). ………………… 3分 ② f ′ (x)=ex-e. 當(dāng)x<1時(shí),f′ (x)<0,所以f (x)在區(qū)間(-∞,1)上單調(diào)遞減; 當(dāng)x>1時(shí),f′ (x)>0,所以f(x)在區(qū)間(1,+∞)上單調(diào)遞增. 1 當(dāng)m≤1時(shí),f (x)在(-∞,m]上單調(diào)遞減,值域?yàn)閇em-em-1,+∞), g(x)=(2-e- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 專題3.2 導(dǎo)數(shù)的應(yīng)用試題含解析 2019 2020 年高 數(shù)學(xué) 復(fù)習(xí) 專題 3.2 導(dǎo)數(shù) 應(yīng)用 試題 解析
鏈接地址:http://www.szxfmmzy.com/p-2517397.html