2019-2020年高中數(shù)學(xué)《三角函數(shù)模型的簡(jiǎn)單應(yīng)用》教案2新人教A版必修4.doc
《2019-2020年高中數(shù)學(xué)《三角函數(shù)模型的簡(jiǎn)單應(yīng)用》教案2新人教A版必修4.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《三角函數(shù)模型的簡(jiǎn)單應(yīng)用》教案2新人教A版必修4.doc(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)《三角函數(shù)模型的簡(jiǎn)單應(yīng)用》教案2新人教A版必修4 教學(xué)目的 【知識(shí)與技能】 1.掌握三角函數(shù)模型應(yīng)用基本步驟:(1)根據(jù)圖象建立解析式; (2)根據(jù)解析式作出圖象; (3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型. 2.利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型. 【過程與方法】 練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題 3、一根為L(zhǎng)cm的線,一端固定,另一端懸掛一個(gè)小球,組成一個(gè)單擺,小球擺動(dòng)時(shí),離開平衡位置的位移s(單位:cm)與時(shí)間t(單位:s)的函數(shù)關(guān)系是,(1)求小球擺動(dòng)的周期和頻率;(2)已知g=980cm/s2,要使小球擺動(dòng)的周期恰好是1秒,線的長(zhǎng)度l應(yīng)當(dāng)是多少? 解:(1);(2). 4、略(學(xué)生看書) 二、應(yīng)用舉例: 例1如圖,某地一天從6~14時(shí)的溫度變化曲線近似滿足函數(shù)y=Asin(wx+j)+b (1) 求這一天6~14時(shí)的最大溫差; (2) 寫出這段曲線的函數(shù)解析式. 本題是研究溫度隨時(shí)間呈周期性變化的問題.問題給出了某個(gè)時(shí)間段的溫度變化曲線,要求這一天的最大溫差,并寫出曲線的函數(shù)解析式.也就是利用函數(shù)模型來解決問題.要特別注意自變量的變化范圍. 例2 畫出函數(shù)y=|sinx|的圖象并觀察其周期. 本題利用函數(shù)圖象的直觀性,通過觀察圖象而獲得對(duì)函數(shù)性質(zhì)的認(rèn)識(shí),這是研究數(shù)學(xué)問題的常用方法.顯然,函數(shù)與正弦函數(shù)有緊密的聯(lián)系. 練習(xí):教材P65面1題 例3 如圖,設(shè)地球表面某地正午太陽(yáng)高度角為q,d為此時(shí)太陽(yáng)直射緯度,j為該地的緯度值,那 么這三個(gè)量之間的關(guān)系是q =90-|j -d |.當(dāng)?shù)叵陌肽阣取正值,冬半年d取負(fù)值. 如果在北京地區(qū)(緯度數(shù)約為北緯40)的一幢高為h0的樓房北面蓋一新樓,要使新樓一層正午 的太陽(yáng)全年不被前面的樓房遮擋,兩樓的距離不應(yīng)小于多少? 本題是研究樓高與樓在地面的投影長(zhǎng)的關(guān)系問題,是將實(shí)際問題直接抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型,然后根據(jù)所得的模型解決問題。應(yīng)當(dāng)注意在復(fù)雜的背景中抽取基本的數(shù)學(xué)關(guān)系,還要調(diào)動(dòng)相關(guān)學(xué)科知識(shí)來幫助理解問題。 例4海水受日月的引力,在一定的時(shí)候發(fā)生漲落的現(xiàn)象叫潮,一般地,早潮叫潮,晚潮叫汐.在通 常情況下,船在漲潮時(shí)駛進(jìn)航道,靠近碼頭;卸貨后,在落潮時(shí)返回海洋.下面是某港口在某季節(jié) 每天的時(shí)間與水深的關(guān)系表: 時(shí)刻 水深/米 時(shí)刻 水深/米 時(shí)刻 水深/米 0:00 5.0 9:00 2.5 18:00 5.0 3:00 7.5 12:00 5.0 21:00 2.5 6:00 5.0 15:00 7.5 24:00 5.0 (1) 選用一個(gè)函數(shù)來近似描述這個(gè)港口的水深與時(shí)間的函數(shù)關(guān)系,并給出整點(diǎn)時(shí)的水深的近似數(shù)值 (精確到0.001). (2) 一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規(guī)定至少要有1.5米的安全間隙(船 底與洋底的距離) ,該船何時(shí)能進(jìn)入港口?在港口能呆多久? (3) 若某船的吃水深度為4米,安全間隙為1.5米,該船在2:00開始卸貨,吃水深度以每小時(shí)0.3 米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域? 本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁(yè)的 “思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。 練習(xí):教材P65面3題 三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟: (1)根據(jù)圖象建立解析式; (2)根據(jù)解析式作出圖象; (3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型. 2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型. 四、作業(yè)《習(xí)案》作業(yè)十四及十五。 補(bǔ)充例題: 一半徑為3m的水輪如右圖所示,水輪圓心O距離水面2m,已知水輪每分鐘轉(zhuǎn)動(dòng)4圈,如果當(dāng)水輪上P點(diǎn)從水中浮現(xiàn)時(shí)(圖中P0)點(diǎn)開始計(jì)算時(shí)間. (1) 求P點(diǎn)相對(duì)于水面的高度h(m)與時(shí)間t(s)之間的函數(shù)關(guān)系式; (2) P點(diǎn)第一次達(dá)到最高點(diǎn)約要多長(zhǎng)時(shí)間?- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 三角函數(shù)模型的簡(jiǎn)單應(yīng)用 2019 2020 年高 數(shù)學(xué) 三角函數(shù) 模型 簡(jiǎn)單 應(yīng)用 教案 新人 必修
鏈接地址:http://www.szxfmmzy.com/p-2571890.html