2019-2020年高中數(shù)學(xué)《函數(shù)的單調(diào)性》教案2 新人教A版必修1.doc
《2019-2020年高中數(shù)學(xué)《函數(shù)的單調(diào)性》教案2 新人教A版必修1.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《函數(shù)的單調(diào)性》教案2 新人教A版必修1.doc(3頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)《函數(shù)的單調(diào)性》教案2 新人教A版必修1 (一)教學(xué)目標(biāo) 1.知識(shí)與技能 (1)理解函數(shù)單調(diào)性的定義、明確增函數(shù)、減函數(shù)的圖象特征. (2)能利用函數(shù)圖象劃分函數(shù)的單調(diào)區(qū)間,并能利用定義進(jìn)行證明. 2.過程與方法 由一元一次函數(shù)、一元二次函數(shù)的圖象,讓學(xué)生從圖象獲得“上升”“下降”的整體認(rèn)識(shí). 利用函數(shù)對(duì)應(yīng)的表格,用自然語言描述圖象特征“上升”“下降”最后運(yùn)用數(shù)學(xué)符號(hào)將自然語言的描述提升到形式化的定義,從而構(gòu)造函數(shù)單調(diào)性的概念. 3.情感、態(tài)度與價(jià)格觀 在形與數(shù)的結(jié)合中感知數(shù)學(xué)的內(nèi)在美,在圖形語言、自然語言、數(shù)學(xué)語言的轉(zhuǎn)化中感知數(shù)學(xué)的嚴(yán)謹(jǐn)美. (二)教學(xué)重點(diǎn)和難點(diǎn) 重點(diǎn):理解增函數(shù)、減函數(shù)的概念;難點(diǎn):?jiǎn)握{(diào)性概念的形成與應(yīng)用. (三)教學(xué)方法 討論式教學(xué)法. 在老師的引導(dǎo)下,學(xué)生在回顧舊知,細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的學(xué)習(xí)過程中生疑與析疑,合作與交流,歸納與總結(jié)的過程中獲得新知,從而形成概念,掌握方法. 教學(xué)過程 一、 復(fù)習(xí)引入 1. 長(zhǎng)沙市年生產(chǎn)總值統(tǒng)計(jì)表 2. 長(zhǎng)沙市高等學(xué)校在校學(xué)生數(shù)統(tǒng)計(jì)表 3. 長(zhǎng)沙市日平均出生人數(shù)統(tǒng)計(jì)表 4. 長(zhǎng)沙市耕地面積統(tǒng)計(jì)表 5.常見函數(shù)圖像 二、新課內(nèi)容 1.增函數(shù)、減函數(shù)的概念: 一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮. 1)如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1<x2,時(shí),都有f(x1)<f(x2),那么就說f(x)在這個(gè)區(qū)間上是增函數(shù). 2)如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1<x2,時(shí),都有f(x1)>f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù). 2.函數(shù)單調(diào)性的概念: 如果函數(shù)y=f(x)在某區(qū)間上是增函數(shù)或減函數(shù),那么就說函數(shù)f(x)在這一區(qū)間具有(嚴(yán)格的)單調(diào)性,這一區(qū)間叫做y=f(x)的單調(diào)區(qū)間. 在單調(diào)區(qū)間上增函數(shù)的圖象是上升的,減函數(shù)的圖象是下降的. -2 3 2 1 -1 y -3 -4 4 O x 2 -2 3 1 -3 -11 5 -5 3.例題 例1.右圖是定義在閉區(qū)間[-5,5]上的函數(shù) y=f(x)的圖象,根據(jù)圖象說出y=f(x)的單調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,y=f(x)是增函數(shù)還是減函數(shù). 解:函數(shù)y=f(x)的單調(diào)區(qū)間有[-5,-2), [-2,1),[1,3), [3,5], 其中y=f(x)在區(qū)間[-5,-2),[1,3)上是減 函數(shù),在區(qū)間[-2,1),[3,5]上是增函數(shù). 這種判斷函數(shù)單調(diào)性的方法稱為“圖象法” . 變式1:求y=x2-4 x+5的單調(diào)區(qū)間。 變式2:y=x2-a x+4在[2,4]上是單調(diào)函數(shù),求a的取值范圍。 例2.證明函數(shù)f(x)=3x+2在R上是增函數(shù). 證明:設(shè)x1,x2是R上的任意兩個(gè)實(shí)數(shù),且x1<x2, 取值 則f(x1)-f(x2)=(3x1+2)-(3x2+2) 作差 =(3x1-3x2)+2-2=3(x1-x2). 變形 由x1<x2,得 x1-x2<0, 于是f(x1)-f(x2)<0, 即 f(x1)<f(x2) . 定號(hào) 所以,f(x)=3x+2在R上是增函數(shù). 判斷 這種判斷函數(shù)單調(diào)性的方法稱為“定義法” .它有五個(gè)步驟,分別是:取值、作差、變形、定號(hào)、判斷. 變式1:函數(shù)f(x)=-3x+2在R上是增函數(shù)還是減函數(shù)? 變式2:函數(shù)f(x)=kx+b(k≠0)在R上是增函數(shù)還是減函數(shù)?并證明. 例3.證明函數(shù)f(x)=在(0, +∞)上是減函數(shù). 變式1:f(x)=在(-∞,0)上是增函數(shù)還是減函數(shù)? 可得到f(x)=在(-∞,0)上是減函數(shù). 變式2:討論函數(shù)f(x)=在定義域上的單調(diào)性. 結(jié)論:函數(shù)f(x)=在其定義域上不具有單調(diào)性. 例4.證明函數(shù)f(x)=x+在(0,1]上是減函數(shù). (思備用題,在這節(jié)課講有一定的難度,因此,遠(yuǎn)端學(xué)校的老師根據(jù)學(xué)生的情況酌情處理.) 三.課堂總結(jié) 1)兩個(gè)定義:增函數(shù)、減函數(shù); 2)兩種方法:判斷函數(shù)單調(diào)性的方法有:圖象法、定義法. 四.課外作業(yè) 1)閱讀教材 27 頁至 30 頁; 2)《習(xí)案》作業(yè)9.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 函數(shù)的單調(diào)性 2019-2020年高中數(shù)學(xué)函數(shù)的單調(diào)性教案2 新人教A版必修1 2019 2020 年高 數(shù)學(xué) 函數(shù) 調(diào)性 教案 新人 必修
鏈接地址:http://www.szxfmmzy.com/p-2572342.html