2019-2020年高中數(shù)學(xué)《向量的線性運(yùn)算》教案5 蘇教版必修4.doc
《2019-2020年高中數(shù)學(xué)《向量的線性運(yùn)算》教案5 蘇教版必修4.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《向量的線性運(yùn)算》教案5 蘇教版必修4.doc(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)《向量的線性運(yùn)算》教案5 蘇教版必修4 【三維目標(biāo)】: 一、知識與技能 1.理解向量加法的含義,會用向量加法的三角形法則和平行四邊形法則作兩個向量的和。 2.通過將向量運(yùn)算與熟悉的數(shù)的運(yùn)算進(jìn)行類比,使學(xué)生掌握向量加法運(yùn)算的交換律和結(jié)合律,表述兩個運(yùn)算律的幾何意義,并會用它們進(jìn)行向量計算,滲透類比的數(shù)學(xué)方法;培養(yǎng)數(shù)形結(jié)合解決問題的能力; 3.掌握有特殊位置關(guān)系的兩個向量的和,比如共線向量、共起點(diǎn)向量、共終點(diǎn)向量等. 4.初步體會數(shù)形結(jié)合在向量解題中的應(yīng)用. 二、過程與方法 教材利用同學(xué)們熟悉的物理知識引出向量的加法,一方面啟發(fā)我們利用位移的合成去探索兩個向量的和,另一方面幫助我們利用物理背景去理解向量的加法。最后通過講解例題,指導(dǎo)發(fā)現(xiàn)知識結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力. 三、情感、態(tài)度與價值觀 通過本節(jié)內(nèi)容的學(xué)習(xí),使同學(xué)們對向量加法的三角形法則和平行四邊形法則有了一定的認(rèn)識,進(jìn)一步讓學(xué)生理解和領(lǐng)悟數(shù)形結(jié)合的思想;同時以較熟悉的物理背景去理解向量的加法,感受數(shù)學(xué)與生活的聯(lián)系,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和積極性。 【教學(xué)重點(diǎn)與難點(diǎn)】: 重點(diǎn):如何作兩個向量的和向量 難點(diǎn):對向量加法定義的理解. 【學(xué)法與教學(xué)用具】: 1. 學(xué)法: (1)自主性學(xué)習(xí)+探究式學(xué)習(xí)法: (2)反饋練習(xí)法:以練習(xí)來檢驗(yàn)知識的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距. 2.學(xué)法指導(dǎo) 數(shù)能進(jìn)行運(yùn)算,向量是否也能進(jìn)行運(yùn)算呢?數(shù)的加法啟發(fā)我們,從運(yùn)算的角度看,位移的合成、力的合成可看作向量的加法;借助于物理中位移的合成、力的合成來理解向量的加法,讓學(xué)生順理成章接受向量的加法定義;結(jié)合圖形掌握向量加法的三角形法則和平行四邊形法則;聯(lián)系數(shù)的運(yùn)算律理解和掌握向量加法運(yùn)算的交換律和結(jié)合律。 3. 教學(xué)用具:多媒體、實(shí)物投影儀、尺規(guī). 【授課類型】:新授課 【課時安排】:1課時 【教學(xué)思路】: 一、創(chuàng)設(shè)情景,揭示課題 【復(fù)習(xí)】:1.向量的概念 2.平行向量、相等向量的概念。 【情景設(shè)置】:利用向量的表示,從景點(diǎn)到景點(diǎn)的位移為,從景點(diǎn)到景點(diǎn)的位移為,那么經(jīng)過這兩次位移后游艇的合位移是 ●這里,向量,,三者之間有什么關(guān)系? 二、研探新知 1.向量的加法 向量的加法:求兩個向量和的運(yùn)算叫做向量的加法。表示:=. 規(guī)定:零向量與任一向量,都有. 【注意】:兩個向量的和仍舊是向量(簡稱和向量) 作法:在平面內(nèi)任意取一點(diǎn),作=,=,則=+=+ A B O + O A B O A B + 2.向量的加法法則 (1)共線向量的加法: 同向向量 反向向量 (2)不共線向量的加法 幾何中向量加法是用幾何作圖來定義的,一般有兩種方法,即向量加法的三角形法則(“首尾相接,首尾連”)和平行四邊形法則(對于兩個向量共線不適應(yīng))。 三角形法則:根據(jù)向量加法定義得到的求向量和的方法,稱為向量加法的三角形法則。表示:=. 平行四邊形法則:以同一點(diǎn)為起點(diǎn)的兩個已知向量,為鄰邊作平行四邊形,則以為起點(diǎn)的對角線就是與的和,這種求向量和的方法稱為向量加法的平行四邊形法則。 如圖,已知向量、在平面內(nèi)任取一點(diǎn),作=,,則向量叫做與的和,記作+,即+ + + A B C A B C D 三角形法則 平行四邊形法則 【說明】:教材中采用了三角形法則來定義,這種定義,對兩向量共線時同樣適用,當(dāng)向量不共線時,向量加法的三角形法則和平行四邊形法則是一致的 特殊情況: 探究:(1)兩相向量的和仍是一個向量; (2)當(dāng)向量與不共線時,+的方向不同向,且|+|||+||; (3)當(dāng)與同向時,則+、、同向,且|+|=||+||,當(dāng)與反向時,若||||,則+的方向與相同,且|+|=||-||;若||||,則+的方向與相同,且|+|=||-||. (4)“向量平移”:使前一個向量的終點(diǎn)為后一個向量的起點(diǎn),可以推廣到個向量連加 3.向量加法的運(yùn)算律 (1)向量加法的交換律:+=+ (2)向量加法的結(jié)合律:(+) +=+(+) 證明:如圖:使, , 則 (+)+=+,+ (+)=,∴(+)+=+(+) 從而,多個向量的加法運(yùn)算可以按照任意的次序、任意的組合來進(jìn)行 例如:;. 三、質(zhì)疑答辯,排難解惑,發(fā)展思維 例1 (教材例1)如圖,為正六邊形的中心,作出下列向量: (1)+ (2)+ (3)+ 例2.如圖,一艘船從點(diǎn)出發(fā)以的速度向垂直于對岸的方向行駛,同時水的流速為,求船實(shí)際航行的速度的大小與方向。 解:設(shè)表示船垂直于對岸的速度,表示水流的速度,以, 為鄰邊作平行四邊形,則就是船實(shí)際航行的速度,在 中,,,所以。 因?yàn)? 例3 已知矩形中,寬為,長為,,=,=,試作出向量,并求出其模的大小。 例4 一架飛機(jī)向北飛行千米后,改變航向向東飛行千米,則飛行的路程為 400千米 ;兩次位移的和的方向?yàn)楸逼珫|,大小為千米. 例5 (教材例2)在長江南岸某渡口處,江水以的速度向東流,渡般的速度為,渡般要垂直地渡過長江,其航向應(yīng)如何確定? 【舉一反三】 若渡般以的速度按垂直于河岸的航向航向航行,那么受水流影響,渡船的實(shí)際航向如何? 四、鞏固深化,反饋矯正 1.一艘船從點(diǎn)出發(fā)以的速度向垂直于對岸的方向行駛,船的實(shí)際航行的速度的大小為,求水流的速度。 2.一艘船距對岸,以的速度向垂直于對岸的方向行駛,到達(dá)對岸時,船的實(shí)際航程為8km,求河水的流速。 3.一艘船從點(diǎn)出發(fā)以的速度向垂直于對岸的方向行駛,同時河水的流速為,船的實(shí)際航行的速度的大小為,方向與水流間的夾角是,求和 4.一艘船以5的速度在行駛,同時河水的流速為2,則船的實(shí)際航行速度大小最大是,最小是. 五、歸納整理,整體認(rèn)識 1.理解向量加法的概念及向量加法的幾何意義; 2.熟練掌握向量加法的平行四邊形法則、三角形法則和向量加法運(yùn)算律. 六、承上啟下,留下懸念 1.已知兩個力,的夾角是直角,且知它們的合力與的夾角是,牛,求和的大小。 七、板書設(shè)計(略) 八、課后記: 向量的線性運(yùn)算(二) 【三維目標(biāo)】: 一、知識與技能 1.通過實(shí)例,掌握向量減法的運(yùn)算,并理解其幾何意義; 2.掌握向量減法與加法的逆運(yùn)算關(guān)系,能準(zhǔn)確作出兩個向量的差向量,并且能掌握差向量的起點(diǎn)和終點(diǎn)的規(guī)律; 3.能熟練地掌握用三角形法則和平行四邊形法則作出兩向量的差向量,了解向量方程,并會用幾何法解向量方程; 4.對學(xué)生滲透化歸、類比和數(shù)形結(jié)合的思想,繼續(xù)培養(yǎng)學(xué)生識圖和作圖的能力,及運(yùn)用圖形解題的能力。 二、過程與方法 向量減法運(yùn)算可以轉(zhuǎn)化成向量的加法運(yùn)算,通過知識發(fā)生發(fā)展過程教學(xué)使學(xué)生感受和領(lǐng)悟數(shù)學(xué)發(fā)展的過程及其思想;最后通過講解例題,指導(dǎo)發(fā)現(xiàn)知識結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力。 三、情感、態(tài)度與價值觀 1.通過闡述向量的減法運(yùn)算可以轉(zhuǎn)化成向量的加法運(yùn)算,使學(xué)生理解事物之間可以相互轉(zhuǎn)化的辯證思想。 2.通過本節(jié)內(nèi)容的學(xué)習(xí),使同學(xué)們對向量加法的三角形法則和平行四邊形法則有了一定的認(rèn)識,進(jìn)一步讓學(xué)生理解和領(lǐng)悟數(shù)形結(jié)合的思想;同時以較熟悉的物理背景去理解向量的加法,這樣有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,實(shí)事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神。 【教學(xué)重點(diǎn)與難點(diǎn)】: 重點(diǎn):向量減法的概念和向量減法的作圖法. 難點(diǎn):減法運(yùn)算時方向的確定. 【學(xué)法與教學(xué)用具】: 1.學(xué)法: (1)自主性學(xué)習(xí)+探究式學(xué)習(xí)法: (2)反饋練習(xí)法:以練習(xí)來檢驗(yàn)知識的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距. 2.學(xué)法指導(dǎo):減法運(yùn)算是加法運(yùn)算的逆運(yùn)算,學(xué)生在理解相反向量的基礎(chǔ)上結(jié)合向量的加法運(yùn)算掌握向量的減法運(yùn)算;并利用三角形做出減向量。 3. 教學(xué)用具:多媒體、實(shí)物投影儀、尺規(guī). 【授課類型】:新授課 【課時安排】:1課時 【教學(xué)思路】: 一、創(chuàng)設(shè)情景,揭示課題 1.向量的加法定義、法則和運(yùn)算律 2.數(shù)的運(yùn)算:減法是加法的逆運(yùn)算 二、研探新知 向量的減法是向量加法的逆運(yùn)算。 1.向量減法的定義 若+=,則向量叫做與的差,記為-,求兩個向量差的運(yùn)算,叫做向量的減法.表示:-=+(-) 2.向量減法的法則 根據(jù)向量減法的定義和向量加法的三角形法則,我們可以得到向量-的作圖方法 【思考】 :已知,,怎樣求作-? B O A - (1)三角形法則:已知,,在平面內(nèi)任取一點(diǎn),作,,則. 即-可以表示為從(減向量)的終點(diǎn),指向(被減向量)的終點(diǎn)的向量.(強(qiáng)調(diào):,同起點(diǎn)時,-是連結(jié),的終點(diǎn),并指向“被減向量”的向量.) O A B (2)平行四邊形法:在平面內(nèi)任取一點(diǎn)O,作,,則由向量加法的平行四邊形法則可得=+(-)=-. 【思考】 :從向量的終點(diǎn)指向向量的終點(diǎn)的向量是什么?( -) 【探究】 :如右圖,∥時,怎樣作出-呢? 三、質(zhì)疑答辯,排難解惑,發(fā)展思維 例1 (教材例1)如圖2-2-7(1),已知向量,不共線,求作向量- 【思考】 :A B C D O 你能畫圖說明-=+(-)嗎? 例2 如圖,是平行四邊形的對角線的交點(diǎn), 若,,,試證明:+-= 例3 用向量法證明:對角線互相平分的四邊形是平行四邊形 例4 試證:對任意向量,都有. 證明:(1)當(dāng),中有零向量時,顯然成立。(2)當(dāng),均不為零向量時: ①與共線,即。當(dāng),同向時,;當(dāng),反向時,. ②,不共線時,在中,,則有 .∴ 其中:當(dāng),同向時,, 當(dāng),同向時,. 【思考】:任意一個非零向量是否一定可以表示為兩個不共線的向量的和? 四、鞏固深化,反饋矯正 教材練習(xí):第1至6題 五、歸納整理,整體認(rèn)識 1.掌握向量減法概念并知道向量的減法的定義是建立在向量加法的基礎(chǔ)上的; 2.會作兩向量的差向量; 3.能夠結(jié)合圖形進(jìn)行向量計算以及用兩個向量表示其它向量。 六、承上啟下,留下懸念 1.已知正方形的邊長等于1,,,,求作向量:(1) (2); 2.已知向量,的模分別是3,4,求的取值范圍。 3.預(yù)習(xí)向量的數(shù)乘 七、板書設(shè)計(略) 八、課后記: 向量的線性運(yùn)算(三) 【三維目標(biāo)】: 一、知識與技能 1.理解向量數(shù)乘的含義及向量數(shù)乘的運(yùn)算律; 2.讓學(xué)生能由實(shí)數(shù)運(yùn)算律類比向量運(yùn)算律,并且驗(yàn)證強(qiáng)化對知識的形成過程的認(rèn)識,正確表示結(jié)果; 二、過程與方法 1. 教材利用同學(xué)們熟悉的物理知識引出實(shí)數(shù)與向量的積 2. 三個運(yùn)算定律(結(jié)合律,第一分配律,第二分配律),在此基礎(chǔ)上得到數(shù)乘運(yùn)算的幾何意義; 3.為了幫助學(xué)生消化和鞏固相應(yīng)的知識,教材設(shè)置了幾個例題;通過講解例題,指導(dǎo)發(fā)現(xiàn)知識結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力. 三、情感、態(tài)度與價值觀 通過本節(jié)內(nèi)容的學(xué)習(xí),使同學(xué)們對實(shí)數(shù)與向量積有了較深的認(rèn)識,讓學(xué)生理解和領(lǐng)悟知識將各學(xué)科有機(jī)的聯(lián)系起來了,這樣有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,有助于培養(yǎng)學(xué)生的發(fā)散思維和勇于創(chuàng)新的精神. 【教學(xué)重點(diǎn)與難點(diǎn)】: 重點(diǎn):實(shí)數(shù)與向量積的定義及幾何意義. 難點(diǎn):實(shí)數(shù)與向量積的幾何意義的理解. 【學(xué)法與教學(xué)用具】: 1. 學(xué)法:(1)自主性學(xué)習(xí)+探究式學(xué)習(xí)法: (2)反饋練習(xí)法:以練習(xí)來檢驗(yàn)知識的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距. 2. 教學(xué)用具:多媒體、實(shí)物投影儀. 【授課類型】:新授課 【課時安排】:1課時 【教學(xué)思路】: 一、創(chuàng)設(shè)情景,揭示課題 質(zhì)點(diǎn)從點(diǎn)出發(fā)做勻速直線運(yùn)動,若經(jīng)過1的位移對應(yīng)的向量用表示,那么在同方向上經(jīng)過3的位移所對應(yīng)的向量可用3來表示。 ●這里,3是何種運(yùn)算的結(jié)果? 二、研探新知 1.實(shí)數(shù)與向量的積的定義: 一般地,實(shí)數(shù)與向量的積是一個向量,記作,它的長度與方向規(guī)定如下: (1); (2)當(dāng)時,的方向與的方向相同;當(dāng)時,的方向與的方向相反; 當(dāng) 時,.(請學(xué)生自己解釋其幾何意義) 實(shí)數(shù)與向量相乘,叫做向量的數(shù)乘 2.實(shí)數(shù)與向量的積的運(yùn)算律: (1)(結(jié)合律); ① (2)(第一分配律); ② (3)(第二分配律). ③ 【思考】:根據(jù)幾何意義,你能否驗(yàn)證下列實(shí)數(shù)與向量的積的是否滿足下列運(yùn)算定律(證明的過程可根據(jù)學(xué)生的實(shí)際水平?jīng)Q定) 三、質(zhì)疑答辯,排難解惑,發(fā)展思維 例1 (教材例1)已知向量和向量,求作向量和向量2-3。 例2 (教材例2)計算: (1)3(-)-2(+2); (2)2(2+6-3)-3(-3+4-2) 【思考】:向量數(shù)乘有哪些相同點(diǎn)和不同點(diǎn)? 【舉一反三】 計算:(1); (2); (3). 解:(1)原式=; (2)原式=; (3)原式=. 四、鞏固深化,反饋矯正 (教材)練習(xí)1至5題 五、歸納整理,整體認(rèn)識 實(shí)數(shù)與向量積的定義,理解實(shí)數(shù)與向量積的幾何意義;實(shí)數(shù)與向量的積的運(yùn)算律 六、承上啟下,留下懸念 1.當(dāng)時,驗(yàn)證:(+)=+ 證:當(dāng)=0時,左邊=0?(+)= 右邊=0?+0?= 分配律成立當(dāng)為正整數(shù)時,令=, 則有: (+)=(+)+(+)+…+(+)=++…+++++…+=+ 即為正整數(shù)時,分配律成立 當(dāng)為負(fù)整數(shù)時,令=-(為正整數(shù)),有-(+)=[-(+)]=[(-)+(-)] =(-)+(-)=-+(-)=--,分配律仍成立 綜上所述,當(dāng)為整數(shù)時,(+)=+恒成立 七、板書設(shè)計(略) 八、課后記: 向量的線性運(yùn)算(四) 【三維目標(biāo)】: 一、知識與技能 1.理解兩個向量共線的含義,并能運(yùn)用它們證明簡單的幾何問題。 2.理解兩個向量共線(平行)的充要條件,能表示與某個非零向量共線的向量,能判斷兩個向量共線; 3.通過練習(xí)使學(xué)生對兩個向量共線的充要條件,平面向量的基本定理有更深刻的理解,初步學(xué)會用向量的方法解決一些簡單的幾何問題和實(shí)際應(yīng)用問題 二、過程與方法 通過對兩個向量共線(平行)充要條件的探索,對平面向量的基本定理有更深刻的理解,為了幫助學(xué)生消化和鞏固相應(yīng)的知識,教材設(shè)置了幾個例題;通過講解例題,指導(dǎo)發(fā)現(xiàn)知識結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力. 三、情感、態(tài)度與價值觀 通過本節(jié)內(nèi)容的學(xué)習(xí),使同學(xué)們對實(shí)數(shù)與向量積以及平面向量基本定理有了較深的認(rèn)識,讓學(xué)生理解和領(lǐng)悟知識將各學(xué)科有機(jī)的聯(lián)系起來了,這樣有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,有助于培養(yǎng)學(xué)生的發(fā)散思維和勇于創(chuàng)新的精神. 【教學(xué)重點(diǎn)與難點(diǎn)】: 重點(diǎn):理解兩個向量共線(平行)的充要條件,能表示與某個非零向量共線的向量,能判斷兩個向量共線; 難點(diǎn):對兩個向量共線(平行)的充要條件的理解. 【學(xué)法與教學(xué)用具】: 1. 學(xué)法: (1)自主性學(xué)習(xí)+探究式學(xué)習(xí)法: (2)反饋練習(xí)法:以練習(xí)來檢驗(yàn)知識的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距. 2. 教學(xué)用具:多媒體、實(shí)物投影儀. 【授課類型】:新授課 【課時安排】:1課時 【教學(xué)思路】: 一、創(chuàng)設(shè)情景,揭示課題 向量數(shù)乘的含義及向量數(shù)乘的運(yùn)算律; 二、研探新知 【探索】:(師生共同分析向量共線的充要條件)對于向量()、, ① 如果有一個實(shí)數(shù),使得,那么與共線嗎? ② 如果與共線,是否存在一個實(shí)數(shù),使? 答案:若有向量()、,實(shí)數(shù),使=,則由實(shí)數(shù)與向量積的定義知:與為共線向量 若與共線()且||:||=μ,則當(dāng)與同向時=;當(dāng)與反向時=- 從而得:向量與非零向量共線的充要條件是:有且只有一個非零實(shí)數(shù),使=. 定理:向量 ()與共線,當(dāng)且僅當(dāng)有唯一一個實(shí)數(shù),使=. 【思考】:為什么要求是非零的? (若=,則,總共線,而時,則不存在實(shí)數(shù),使=成立;而==時,不管取什么值,=總成立,不唯一) 三、質(zhì)疑答辯,排難解惑,發(fā)展思維 B D A C E 例1(教材例3)如圖2-2-10,分別為的邊 和中點(diǎn),求證:與共線,并將用線性表示。 例2 判斷下列各題中的向量是否共線: (1),; (2),,且,共線. 解:(1)當(dāng)時,則,顯然與共線. 當(dāng)時,=-=-,∴與共線. (3)當(dāng),中至少有一個為零向量時,顯然與共線. 當(dāng),均不為零向量時,設(shè) ∴, 若時,,,顯然與共線.若時,, ∴與共線. 例3 (教材例4)如圖2-2-11,中,為直線上一點(diǎn), 求證: 四、鞏固深化,反饋矯正 教材練習(xí) 五、歸納整理,整體認(rèn)識 生總結(jié):(1)向量與非零向量共線的條件是:有且只有一個非零實(shí)數(shù),使=. (2)理解兩向量共線(平行)的充要條件,并會判斷兩個向量是否共線。 (3)平面向量基本定理的理解及注意的問題. 六、承上啟下,留下懸念 【思考】:上例所證的結(jié)論表明:起點(diǎn)為,終點(diǎn)為直線上一點(diǎn)的向量可以用表示,那么兩個不共線的向量可以表示平面內(nèi)任一向量嗎? 七、板書設(shè)計(略) 八、課后記:- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 向量的線性運(yùn)算 2019-2020年高中數(shù)學(xué)向量的線性運(yùn)算教案5 蘇教版必修4 2019 2020 年高 數(shù)學(xué) 向量 線性 運(yùn)算 教案 蘇教版 必修
鏈接地址:http://www.szxfmmzy.com/p-2599980.html