2019-2020年高中數(shù)學(xué) 2.5.1 平面幾何中的向量方法教案 新人教A版必修4.doc
《2019-2020年高中數(shù)學(xué) 2.5.1 平面幾何中的向量方法教案 新人教A版必修4.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 2.5.1 平面幾何中的向量方法教案 新人教A版必修4.doc(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 2.5.1 平面幾何中的向量方法教案 新人教A版必修4 教學(xué)分析 1.本節(jié)的目的是讓學(xué)生加深對(duì)向量的認(rèn)識(shí),更好地體會(huì)向量這個(gè)工具的優(yōu)越性.對(duì)于向量方法,就思路而言,幾何中的向量方法完全與幾何中的代數(shù)方法一致,不同的只是用“向量和向量運(yùn)算”來(lái)代替“數(shù)和數(shù)的運(yùn)算”.這就是把點(diǎn)、線、面等幾何要素直接歸結(jié)為向量,對(duì)這些向量借助于它們之間的運(yùn)算進(jìn)行討論,然后把這些計(jì)算結(jié)果翻譯成關(guān)于點(diǎn)、線、面的相應(yīng)結(jié)果.代數(shù)方法的流程圖可以簡(jiǎn)單地表述為: 則向量方法的流程圖可以簡(jiǎn)單地表述為: 這就是本節(jié)給出的用向量方法解決幾何問(wèn)題的“三步曲”,也是本節(jié)的重點(diǎn). 2.研究幾何可以采取不同的方法,這些方法包括: 綜合方法——不使用其他工具,對(duì)幾何元素及其關(guān)系直接進(jìn)行討論; 解析方法——以數(shù)(代數(shù)式)和數(shù)(代數(shù)式)的運(yùn)算為工具,對(duì)幾何元素及其關(guān)系進(jìn)行討論; 向量方法——以向量和向量的運(yùn)算為工具,對(duì)幾何元素及其關(guān)系進(jìn)行討論; 分析方法——以微積分為工具,對(duì)幾何元素及其關(guān)系進(jìn)行討論,等等. 前三種方法都是中學(xué)數(shù)學(xué)中出現(xiàn)的內(nèi)容. 有些平面幾何問(wèn)題,利用向量方法求解比較容易.使用向量方法要點(diǎn)在于用向量表示線段或點(diǎn),根據(jù)點(diǎn)與線之間的關(guān)系,建立向量等式,再根據(jù)向量的線性相關(guān)與無(wú)關(guān)的性質(zhì),得出向量的系數(shù)應(yīng)滿足的方程組,求出方程組的解,從而解決問(wèn)題.使用向量方法時(shí),要注意向量起點(diǎn)的選取,選取得當(dāng)可使計(jì)算過(guò)程大大簡(jiǎn)化. 三維目標(biāo) 1.通過(guò)平行四邊形這個(gè)幾何模型,歸納總結(jié)出用向量方法解決平面幾何問(wèn)題的“三步曲”. 2.明了平面幾何圖形中的有關(guān)性質(zhì),如平移、全等、相似、長(zhǎng)度、夾角等可以由向量的線性運(yùn)算及數(shù)量積表示. 3.通過(guò)本節(jié)學(xué)習(xí),讓學(xué)生深刻理解向量在處理有關(guān)平面幾何問(wèn)題中的優(yōu)越性,活躍學(xué)生的思維,發(fā)展學(xué)生的創(chuàng)新意識(shí),激發(fā)學(xué)生的學(xué)習(xí)積極性,并體會(huì)向量在幾何和現(xiàn)實(shí)生活中的意義.教學(xué)中要求盡量引導(dǎo)學(xué)生使用信息技術(shù)這個(gè)現(xiàn)代化手段. 重點(diǎn)難點(diǎn) 教學(xué)重點(diǎn):用向量方法解決實(shí)際問(wèn)題的基本方法;向量法解決幾何問(wèn)題的“三步曲”. 教學(xué)難點(diǎn):如何將幾何等實(shí)際問(wèn)題化歸為向量問(wèn)題. 課時(shí)安排 1課時(shí) 教學(xué)過(guò)程 導(dǎo)入新課 思路1.(直接導(dǎo)入)向量的概念和運(yùn)算都有著明確的物理背景和幾何背景,當(dāng)向量和平面坐標(biāo)系結(jié)合后,向量的運(yùn)算就完全可以轉(zhuǎn)化為代數(shù)運(yùn)算.這就為我們解決物理問(wèn)題和幾何研究帶來(lái)了極大的方便.本節(jié)專門研究平面幾何中的向量方法. 思路2.(情境導(dǎo)入)由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長(zhǎng)度、夾角等都可以由向量的線性運(yùn)算及數(shù)量積表示出來(lái),因此,可用向量方法解決平面幾何中的一些問(wèn)題.下面通過(guò)幾個(gè)具體實(shí)例,說(shuō)明向量方法在平面幾何中的運(yùn)用. 推進(jìn)新課 新知探究 提出問(wèn)題 圖1 ①平行四邊形是表示向量加法和減法的幾何模型,如圖1,你能觀察、發(fā)現(xiàn)并猜想出平行四邊形對(duì)角線的長(zhǎng)度與兩鄰邊長(zhǎng)度之間有什么關(guān)系嗎? ②你能利用所學(xué)知識(shí)證明你的猜想嗎?能利用所學(xué)的向量方法證明嗎?試一試可用哪些方法? ③你能總結(jié)一下利用平面向量解決平面幾何問(wèn)題的基本思路嗎? 活動(dòng):①教師引導(dǎo)學(xué)生猜想平行四邊形對(duì)角線的長(zhǎng)度與兩鄰邊長(zhǎng)度之間有什么關(guān)系.利用類比的思想方法,猜想平行四邊形有沒(méi)有相似關(guān)系.指導(dǎo)學(xué)生猜想出結(jié)論:平行四邊形兩條對(duì)角線的平方和等于四條邊的平方和. ②教師引導(dǎo)學(xué)生探究證明方法,并點(diǎn)撥學(xué)生對(duì)各種方法分析比較,平行四邊形是學(xué)生熟悉的重要的幾何圖形,在平面幾何的學(xué)習(xí)中,學(xué)生得到了它的許多性質(zhì),有些性質(zhì)的得出比較麻煩,有些性質(zhì)的得出比較簡(jiǎn)單.讓學(xué)生體會(huì)研究幾何可以采取不同的方法,這些方法包括綜合方法、解析方法、向量方法. 圖2 證明:方法一:如圖2. 作CE⊥AB于E,DF⊥AB于F,則Rt△ADF≌Rt△BCE. ∴AD=BC,AF=BE.由于AC AE2+CE2=(AB+BE)2+CE2=AB2+2ABBE+BE2+CE2=AB2+2ABBE+BC2. BD2=BF2+DF2=(AB-AF)2+DF2=AB2-2ABAF+AF2+DF2=AB2-2ABAF+AD2=AB2-2ABBE+BC2.∴AC2+BD2=2(AB2+BC2). 圖3 方法二:如圖3. 以AB所在直線為x軸,A為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系. 設(shè)B(a,0),D(b,c),則C(a+b,c). ∴|AC|2=(a+b)2+c2=a2+2ab+b2+c2, |BD|2=(a-b)2+(-c)2=a2-2ab+b2+c2. ∴|AC|2+|BD|2=2a2+2(b2+c2)=2(|AB|2+|AD|2). 用向量方法推導(dǎo)了平行四邊形的兩條對(duì)角線與兩條鄰邊之間的關(guān)系.在用向量方法解決涉及長(zhǎng)度、夾角的問(wèn)題時(shí),常??紤]用向量的數(shù)量積.通過(guò)以下推導(dǎo)學(xué)生可以發(fā)現(xiàn),由于向量能夠運(yùn)算,因此它在解決某些幾何問(wèn)題時(shí)具有優(yōu)越性,它把一個(gè)思辨過(guò)程變成了一個(gè)算法過(guò)程,學(xué)生可按一定的程序進(jìn)行運(yùn)算操作,從而降低了思考問(wèn)題的難度,同時(shí)也為計(jì)算機(jī)技術(shù)的運(yùn)用提供了方便.教學(xué)時(shí)應(yīng)引導(dǎo)學(xué)生體會(huì)向量帶來(lái)的優(yōu)越性.因?yàn)槠叫兴倪呅螌?duì)角線平行且相等,考慮到向量關(guān)系=-,=+,教師可點(diǎn)撥學(xué)生設(shè)=a,=b,其他線段對(duì)應(yīng)向量用它們表示,涉及長(zhǎng)度問(wèn)題常常考慮向量的數(shù)量積,為此,我們計(jì)算||2與||2.因此有了方法三. 方法三:設(shè)=a,=b,則=a+b,=a-b,||2=|a|2,||2=|b|2. ∴||2==(a+b)(a+b)=aa+ab+ba+bb=|a|2+2ab+|b|2. ① 同理||2=|a|2-2ab+|b|2. ② 觀察①②兩式的特點(diǎn),我們發(fā)現(xiàn),①+②得 ||2+||2=2(|a|2+|b|2)=2(||2+||2), 即平行四邊形兩條對(duì)角線的平方和等于兩條鄰邊平方和的兩倍. ③至此,為解決重點(diǎn)問(wèn)題所作的鋪墊已經(jīng)完成,向前發(fā)展可以說(shuō)水到渠成.教師充分讓學(xué)生對(duì)以上各種方法進(jìn)行分析比較,討論認(rèn)清向量方法的優(yōu)越性,適時(shí)引導(dǎo)學(xué)生歸納用向量方法處理平面幾何問(wèn)題的一般步驟.由于平面幾何經(jīng)常涉及距離(線段長(zhǎng)度)、夾角問(wèn)題,而平面向量的運(yùn)算,特別是數(shù)量積主要涉及向量的模以及向量之間的夾角,因此我們可以用向量方法解決部分幾何問(wèn)題.解決幾何問(wèn)題時(shí),先用向量表示相應(yīng)的點(diǎn)、線段、夾角等幾何元素.然后通過(guò)向量的運(yùn)算,特別是數(shù)量積來(lái)研究點(diǎn)、線段等元素之間的關(guān)系.最后再把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系,得到幾何問(wèn)題的結(jié)論.這就是用向量方法解決平面幾何問(wèn)題的“三步曲”,即 (1)建立平面幾何與向量的聯(lián)系,用向量表示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題; (2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問(wèn)題; (3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系. 討論結(jié)果:①能. ②能想出至少三種證明方法. ③略. 應(yīng)用示例 圖4 例1 如圖4, ABCD中,點(diǎn)E、F分別是AD、DC邊的中點(diǎn),BE、BF分別與AC交于R、T兩點(diǎn),你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎? 活動(dòng):為了培養(yǎng)學(xué)生的觀察、發(fā)現(xiàn)、猜想能力,讓學(xué)生能動(dòng)態(tài)地發(fā)現(xiàn)圖形中AR、RT、TC之間的相等關(guān)系,教學(xué)中可以充分利用多媒體,作出上述圖形,測(cè)量AR、RT、TC的長(zhǎng)度,讓學(xué)生發(fā)現(xiàn)AR=RT=TC,拖動(dòng)平行四邊形的頂點(diǎn),動(dòng)態(tài)觀察發(fā)現(xiàn),AR=RT=TC這個(gè)規(guī)律不變,因此猜想AR=RT=TC.事實(shí)上,由于R、T是對(duì)角線AC上的兩點(diǎn),要判斷AR、RT、TC之間的關(guān)系,只需分別判斷AR、RT、TC與AC的關(guān)系即可.又因?yàn)锳R、RT、TC、AC共線,所以只需判斷與之間的關(guān)系即可.探究過(guò)程對(duì)照用向量方法解決平面幾何問(wèn)題的“三步曲”很容易地可得到結(jié)論.第一步,建立平面幾何與向量的聯(lián)系,用向量表示問(wèn)題中的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;第二步,通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系;第三步,把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系:AR=RT=TC. 解:如圖4, 設(shè)=a,=b,=r,=t,則=a+b. 由于與共線,所以我們?cè)O(shè)r=n(a+b),n∈R. 又因?yàn)?-=a-b, 與共線, 所以我們?cè)O(shè)=m=m(a-b). 因?yàn)? 所以r=b+m(a-b). 因此n(a+b)=b+m(a-b), 即(n-m)a+(n+)b=0. 由于向量a、b不共線,要使上式為0,必須 解得n=m=. 所以=, 同理=. 于是=. 所以AR=RT=TC. 點(diǎn)評(píng):教材中本例重在說(shuō)明是如何利用向量的辦法找出這個(gè)相等關(guān)系的,因此在書寫時(shí)可簡(jiǎn)化一些程序.指導(dǎo)學(xué)生在今后的訓(xùn)練中,不必列出三個(gè)步驟. 變式訓(xùn)練 圖5 如圖5,AD、BE、CF是△ABC的三條高.求證:AD、BE、CF相交于一點(diǎn). 證明:設(shè)BE、CF相交于H,并設(shè)=b,=c,=h, 則=h-b,=h-c,=c-b. 因?yàn)椤?⊥, 所以(h-b)c=0,(h-c)b=0, 即(h-b)c=(h-c)b. 化簡(jiǎn)得h(c-b)=0. 所以⊥. 所以AH與AD共線, 即AD、BE、CF相交于一點(diǎn)H. 圖6 例2 如圖6,已知在等腰△ABC中,BB′、CC′是兩腰上的中線,且BB′⊥CC′,求頂角A的余弦值. 活動(dòng):教師可引導(dǎo)學(xué)生思考探究,上例利用向量的幾何法簡(jiǎn)捷地解決了平面幾何問(wèn)題.可否利用向量的坐標(biāo)運(yùn)算呢?這需要建立平面直角坐標(biāo)系,找出所需點(diǎn)的坐標(biāo).如果能比較方便地建立起平面直角坐標(biāo)系,如本例中圖形,很方便建立平面直角坐標(biāo)系,且圖形中的各個(gè)點(diǎn)的坐標(biāo)也容易寫出,是否利用向量的坐標(biāo)運(yùn)算能更快捷地解決問(wèn)題呢? 教師引導(dǎo)學(xué)生建系、找點(diǎn)的坐標(biāo),然后讓學(xué)生獨(dú)立完成. 解:建立如圖6所示的平面直角坐標(biāo)系,取A(0,a),C(c,0),則B(-c,0), =(0,a),=(c,a),=(c,0),=(2c,0). 因?yàn)锽B′、CC′都是中線, 所以=(+)=[(2c,0)+(c,a)]=(), 同理=(). 因?yàn)锽B′⊥CC′, 所以=0,a2=9c2. 所以cosA=. 點(diǎn)評(píng):比較是最好的學(xué)習(xí)方法.本例利用的方法與例題1有所不同,但其本質(zhì)是一致的,教學(xué)中引導(dǎo)學(xué)生仔細(xì)體會(huì)這一點(diǎn),比較兩例的異同,找出其內(nèi)在的聯(lián)系,以達(dá)融會(huì)貫通,靈活運(yùn)用之功效. 變式訓(xùn)練 圖7 (xx湖北高考) 如圖7,在Rt△ABC中,已知BC=a.若長(zhǎng)為2a的線段PQ以點(diǎn)A為中點(diǎn),問(wèn):的夾角θ取何值時(shí),的值最大?并求出這個(gè)最大值. 解:方法一,如圖7. ∵⊥,∴=0. ∵, ∴ = =-a2-+=-a2+(-) =-a2+=-a2+a2cosθ. 故當(dāng)cosθ=1,即θ=0,與的方向相同時(shí),最大,其最大值為0. 圖8 方法二:如圖8. 以直角頂點(diǎn)A為坐標(biāo)原點(diǎn),兩直角邊所在的直線為坐標(biāo)軸,建立如圖所示的平面直角坐標(biāo)系.設(shè)|AB|=c,|AC|=b,則A(0,0),B(c,0),C(0,b),且|PQ|=2a,|BC|=a. 設(shè)點(diǎn)P的坐標(biāo)為(x,y), 則Q(-x,-y). ∴=(x-c,y),=(-x,-y-b),=(-c,b),=(-2x,-2y). ∴=(x-c)(-x)+y(-y-b)=-(x2+y2)+cx-by. ∵cosθ= ∴cx-by=a2cosθ. ∴=-a2+a2cosθ. 故當(dāng)cosθ=1,即θ=0,與的方向相同時(shí), 最大,其最大值為0. 知能訓(xùn)練 圖9 1.如圖9,已知AC為⊙O的一條直徑,∠ABC是圓周角. 求證:∠ABC=90. 證明:如圖9. 設(shè)=a,=b, 則=a+b,=a,=a-b,|a|=|b|. 因?yàn)?(a+b)(a-b)=|a|2-|b|2=0, 所以⊥. 由此,得∠ABC=90. 點(diǎn)評(píng):充分利用圓的特性,設(shè)出向量. 2.D、E、F分別是△ABC的三條邊AB、BC、CA上的動(dòng)點(diǎn),且它們?cè)诔跏紩r(shí)刻分別從A、B、C出發(fā),各以一定速度沿各邊向B、C、A移動(dòng).當(dāng)t=1時(shí),分別到達(dá)B、C、A.求證:在0≤t≤1的任一時(shí)刻t1,△DEF的重心不變. 圖10 證明:如圖10. 建立如圖所示的平面直角坐標(biāo)系,設(shè)A、B、C坐標(biāo)分別為(0,0),(a,0),(m,n). 在任一時(shí)刻t1∈(0,1),因速度一定,其距離之比等于時(shí)間之比,有=λ,由定比分點(diǎn)的坐標(biāo)公式可得D、E、F的坐標(biāo)分別為(at1,0),(a+(m-a)t1,nt1),(m-mt1,n-nt1).由重心坐標(biāo)公式可得△DEF的重心坐標(biāo)為().當(dāng)t=0或t=1時(shí),△ABC的重心也為(),故對(duì)任一t1∈[0,1],△DEF的重心不變. 點(diǎn)評(píng):主要考查定比分點(diǎn)公式及建立平面直角坐標(biāo)系,只要證△ABC的重心和時(shí)刻t1的△DEF的重心相同即可. 課堂小結(jié) 1.由學(xué)生歸納總結(jié)本節(jié)學(xué)習(xí)的數(shù)學(xué)知識(shí)有哪些:平行四邊形向量加、減法的幾何模型,用向量方法解決平面幾何問(wèn)題的步驟,即“三步曲”.特別是這“三步曲”,要提醒學(xué)生理解領(lǐng)悟它的實(shí)質(zhì),達(dá)到熟練掌握的程度. 2.本節(jié)都學(xué)習(xí)了哪些數(shù)學(xué)方法:向量法,向量法與幾何法、解析法的比較,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題的化歸的思想方法,深切體會(huì)向量的工具性這一特點(diǎn). 作業(yè) 課本習(xí)題2.5 A組2,B組3. 設(shè)計(jì)感想 1.本節(jié)是對(duì)研究平面幾何方法的探究與歸納,設(shè)計(jì)的指導(dǎo)思想是:充分使用多媒體這個(gè)現(xiàn)代化手段,引導(dǎo)學(xué)生展開(kāi)觀察、歸納、猜想、論證等一系列思維活動(dòng).本節(jié)知識(shí)方法容量較大,思維含量較高,教師要把握好火候,恰時(shí)恰點(diǎn)地激發(fā)學(xué)生的智慧火花. 2.由于本節(jié)知識(shí)方法在高考大題中得以直接的體現(xiàn),特別是與其他知識(shí)的綜合更是高考的熱點(diǎn)問(wèn)題.因此在實(shí)際授課時(shí)注意引導(dǎo)學(xué)生關(guān)注向量知識(shí)、向量方法與本書的三角、后續(xù)內(nèi)容的解析幾何等知識(shí)的交匯,提高學(xué)生綜合解決問(wèn)題的能力. 3.平面向量的運(yùn)算包括向量的代數(shù)運(yùn)算與幾何運(yùn)算.相比較而言,學(xué)生對(duì)向量的代數(shù)運(yùn)算要容易接受一些,但對(duì)向量的幾何運(yùn)算往往感到比較困難,無(wú)從下手.向量的幾何運(yùn)算主要包括向量加減法的幾何運(yùn)算,向量平行與垂直的充要條件及定比分點(diǎn)的向量式等,它們?cè)谔幚砥矫鎺缀蔚挠嘘P(guān)問(wèn)題時(shí),往往有其獨(dú)到之處,教師可讓學(xué)有余力的學(xué)生課下繼續(xù)探討,以提高學(xué)生的思維發(fā)散能力.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 2.5.1 平面幾何中的向量方法教案 新人教A版必修4 2019 2020 年高 數(shù)學(xué) 2.5 平面幾何 中的 向量 方法 教案 新人 必修
鏈接地址:http://www.szxfmmzy.com/p-2609454.html