2019-2020年高中數(shù)學《集合的概念》教案7新人教B版必修1.doc
《2019-2020年高中數(shù)學《集合的概念》教案7新人教B版必修1.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學《集合的概念》教案7新人教B版必修1.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學《集合的概念》教案7新人教B版必修1 教學目的: (1)使學生初步理解集合的概念,知道常用數(shù)集的概念及記法 (2)使學生初步了解“屬于”關系的意義 (3)使學生初步了解有限集、無限集、空集的意義 教學重點:集合的基本概念及表示方法 教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示 一些簡單的集合 授課類型:新授課 課時安排:1課時 教 具:多媒體、實物投影儀 內(nèi)容分析: 1.集合是中學數(shù)學的一個重要的基本概念在小學數(shù)學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學習數(shù)學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學生認識學習本章的意義,也是本章學習的基礎 把集合的初步知識與簡易邏輯知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎例如,下一章講函數(shù)的概念與性質,就離不開集合與邏輯 本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子 這節(jié)課主要學習全章的引言和集合的基本概念學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義本節(jié)課的教學重點是集合的基本概念 集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明 教學過程: 一、復習引入: 1.簡介數(shù)集的發(fā)展,復習最大公約數(shù)和最小公倍數(shù),質數(shù)與和數(shù); 2.教材中的章頭引言; 3.集合論的創(chuàng)始人——康托爾(德國數(shù)學家)(見附錄); 4.“物以類聚”,“人以群分”; 5.教材中例子(P4) 二、講解新課: 閱讀教材第一部分,問題如下: (1)有那些概念?是如何定義的? (2)有那些符號?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有關概念: 由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素. 定義:一般地,某些指定的對象集在一起就成為一個集合. 1、集合的概念 (1)集合:某些指定的對象集在一起就形成一個集合(簡稱集) (2)元素:集合中每個對象叫做這個集合的元素 2、常用數(shù)集及記法 (1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合記作N, (2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集記作N*或N+ (3)整數(shù)集:全體整數(shù)的集合記作Z , (4)有理數(shù)集:全體有理數(shù)的集合記作Q , (5)實數(shù)集:全體實數(shù)的集合記作R 注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括 數(shù)0 (2)非負整數(shù)集內(nèi)排除0的集記作N*或N+ Q、Z、R等其它 數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0 的集,表示成Z* 3、元素對于集合的隸屬關系 (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作 4、集合中元素的特性 (1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里, 或者不在,不能模棱兩可 (2)互異性:集合中的元素沒有重復 (3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出) 5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小寫的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的開口方向,不能把a∈A顛倒過來寫 三、練習題: 1、教材P5練習1、2 2、下列各組對象能確定一個集合嗎? (1)所有很大的實數(shù)(不確定) (2)好心的人 (不確定) (3)1,2,2,3,4,5.(有重復) 3、設a,b是非零實數(shù),那么可能取的值組成集合的元素是_-2,0,2__ 4、由實數(shù)x,-x,|x|,所組成的集合,最多含( A ) (A)2個元素 (B)3個元素 (C)4個元素 (D)5個元素 5、設集合G中的元素是所有形如a+b(a∈Z, b∈Z)的數(shù),求證: (1) 當x∈N時, x∈G; (2) 若x∈G,y∈G,則x+y∈G,而不一定屬于集合G 證明(1):在a+b(a∈Z, b∈Z)中,令a=x∈N,b=0, 則x= x+0*= a+b∈G,即x∈G 證明(2):∵x∈G,y∈G, ∴x= a+b(a∈Z, b∈Z),y= c+d(c∈Z, d∈Z) ∴x+y=( a+b)+( c+d)=(a+c)+(b+d) ∵a∈Z, b∈Z,c∈Z, d∈Z ∴(a+c) ∈Z, (b+d) ∈Z ∴x+y =(a+c)+(b+d) ∈G, 又∵= 且不一定都是整數(shù), ∴=不一定屬于集合G 四、小結:本節(jié)課學習了以下內(nèi)容: 1.集合的有關概念:(集合、元素、屬于、不屬于) 2.集合元素的性質:確定性,互異性,無序性 3.常用數(shù)集的定義及記法 五、課后作業(yè): 六、板書設計(略) 七、課后記:- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 集合的概念 2019 2020 年高 數(shù)學 集合 概念 教案 新人 必修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.szxfmmzy.com/p-2618463.html