2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 難點(diǎn)2.7 立體幾何中的面積與體積教學(xué)案 文.doc
《2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 難點(diǎn)2.7 立體幾何中的面積與體積教學(xué)案 文.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 難點(diǎn)2.7 立體幾何中的面積與體積教學(xué)案 文.doc(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 難點(diǎn)2.7 立體幾何中的面積與體積教學(xué)案 文 近些年來(lái)在高考中不僅有直接求多面體,旋轉(zhuǎn)體的面積、體積問(wèn)題,也有已知面積或體積求某些元素的量或元素間的位置關(guān)系問(wèn)題,即使考查空間線面的位置關(guān)系也常以幾何體為依托,因而要熟練掌握多面體與旋轉(zhuǎn)體的概念、性質(zhì)以及它們的求積公式,同時(shí)也要學(xué)會(huì)運(yùn)用等價(jià)轉(zhuǎn)化思想,會(huì)把組合體求積問(wèn)題轉(zhuǎn)化為基本幾何體的求積問(wèn)題,會(huì)等體積轉(zhuǎn)化求解問(wèn)題,會(huì)把立體問(wèn)題轉(zhuǎn)化為平面問(wèn)題求解,會(huì)運(yùn)用“割補(bǔ)法”等求解.客觀題主要考查由三視圖得出幾何體的直觀圖,求其表面積、體積或由幾何體的表面積、體積得出某些量;主觀題考查較全面,考查線、面位置關(guān)系,及表面積、體積公式,無(wú)論是何種題型都考查學(xué)生的空間想象能力. 1.空間幾何體的表面積有關(guān)計(jì)算 空間幾何體的面積有側(cè)面積和表面積之分,表面積就是全面積,是一個(gè)空間幾何體中“暴露”在外的所有面的面積,在計(jì)算時(shí)要注意區(qū)分是“側(cè)面積還是表面積”.多面體的表面積就是其所有面的面積之和,旋轉(zhuǎn)體的表面積除了球之外,都是其側(cè)面積和底面面積之和.對(duì)于簡(jiǎn)單的組合體的表面積,一定要注意其表面積是如何構(gòu)成的,在計(jì)算時(shí)不要多算也不要少算,組合體的表面積要根據(jù)情況決定其表面積是哪些面積之和.主要有以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進(jìn)行恰當(dāng)?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系.多面體的表面積是各個(gè)面的面積之和;組合體的表面積應(yīng)注意重合部分的處理.圓柱、圓錐、圓臺(tái)的側(cè)面是曲面,計(jì)算側(cè)面積時(shí)需要將這個(gè)曲面展為平面圖形計(jì)算,而表面積是側(cè)面積與底面圓的面積之和. 例1【安徽省六安市一中xx屆第五次月考】水平放置的,用斜二測(cè)畫(huà)法作出的直觀圖是如圖所示的,其中,則繞所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為( ) A. B. C. D. 【答案】B 面圓半徑為,母線長(zhǎng)為4,故該幾何體的表面積為.選B. 點(diǎn)評(píng):多面體的表面積是各個(gè)面的面積之和;組合體的表面積應(yīng)注意重合部分的處理.圓柱、圓錐、圓臺(tái)的側(cè)面是曲面,計(jì)算側(cè)面積時(shí)需要將這個(gè)曲面展為平面圖形計(jì)算,而表面積是側(cè)面積與底面圓的面積之和. 求解多面體的表面積,關(guān)鍵是找到其中的特征圖形,如棱柱中的矩形,棱錐中的直角三角形,棱臺(tái)中的直角梯形等,通過(guò)這些圖形,找到幾何元素間的關(guān)系,建立未知量與已知量間的關(guān)系,進(jìn)行求解.計(jì)算旋轉(zhuǎn)體的側(cè)面積時(shí),一般采用轉(zhuǎn)化的方法來(lái)進(jìn)行,即將側(cè)面展開(kāi)化為平面圖形,“化曲為直”來(lái)解決,因此要熟悉常見(jiàn)旋轉(zhuǎn)體的側(cè)面展開(kāi)圖的形狀及平面圖形面積的求法. 2.空間幾何體的體積有關(guān)計(jì)算 給出幾何體的三視圖,求該幾何體的體積或表面積時(shí),可以根據(jù)三視圖還原出實(shí)物,畫(huà)出該幾何體的直觀圖,確定該幾何體的結(jié)構(gòu)特征,并利用相應(yīng)的體積公式求出其體積,求體積的方法有直接套用公式法、等體積轉(zhuǎn)換法和割補(bǔ)法等多種.若所給幾何體為不規(guī)則幾何體,常用等積轉(zhuǎn)換法和割補(bǔ)法求解. 例2【遼寧省大連市xx屆第二次聯(lián)考】已知三棱錐的頂點(diǎn)都在半徑為3的球面上, 是球心, ,則三棱錐體積的最大值為( ) A. B. C. D. 【答案】D 點(diǎn)評(píng):本題中是固定的,點(diǎn)是動(dòng)點(diǎn),要使三棱錐體積最大,則點(diǎn)到平面的距離最大,所以只要平面時(shí), 最大,求出底面,高,利用錐體體積公式求解即可.求解多面體的體積問(wèn)題,關(guān)鍵是找到其中的特征圖形,如棱柱中的矩形,棱錐中的直角三角形,棱臺(tái)中的直角梯形等,通過(guò)這些圖形,找到幾何元素間的關(guān)系,建立未知量與已知量間的關(guān)系,進(jìn)行求解.旋轉(zhuǎn)體體積計(jì)算問(wèn)題,只需根據(jù)圖形的特征求出所需元素(半徑、高等),然后代入公式計(jì)算即可. 3.與三視圖有關(guān)的面積與體積的計(jì)算問(wèn)題 給出幾何體的三視圖,求該幾何體的體積或表面積時(shí),可以根據(jù)三視圖還原出實(shí)物,畫(huà)出該幾何體的直觀圖,確定該幾何體的結(jié)構(gòu)特征,并利用相應(yīng)的體積公式求出其體積,求體積的方法有直接套用公式法、等體積轉(zhuǎn)換法和割補(bǔ)法等多種.若所給幾何體為不規(guī)則幾何體,常用等積轉(zhuǎn)換法和割補(bǔ)法求解. 例3【廣西桂林市、賀州市xx屆期末聯(lián)考】一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( ) A. B. 36 C. D. 【答案】C 點(diǎn)評(píng):本題利用空間幾何體的三視圖重點(diǎn)考查學(xué)生的空間想象能力和抽象思維能力,屬于難題.三視圖問(wèn)題是考查學(xué)生空間想象能力最常見(jiàn)題型,也是高考熱點(diǎn).觀察三視圖并將其“翻譯”成直觀圖是解題的關(guān)鍵,不但要注意三視圖的三要素“高平齊,長(zhǎng)對(duì)正,寬相等”,還要特別注意實(shí)線與虛線以及相同圖形的不同位置對(duì)幾何體直觀圖的影響. 4.空間幾何的組合體的面積與體積 當(dāng)給出的幾何體比較復(fù)雜,有關(guān)的計(jì)算公式無(wú)法運(yùn)用,或者雖然幾何體并不復(fù)雜,但條件中的已知元素彼此離散時(shí),我們可采用“割”、“補(bǔ)”的技巧,化復(fù)雜幾何體為簡(jiǎn)單幾何體(柱、錐、臺(tái)),或化離散為集中,給解題提供便利.幾何體的“分割”:幾何體的分割即將已知的幾何體按照結(jié)論的要求,分割成若干個(gè)易求體積的幾何體,進(jìn)而求之.幾何體的“補(bǔ)形”:與分割一樣,有時(shí)為了計(jì)算方便,可將幾何體補(bǔ)成易求體積的幾何體,如長(zhǎng)方體、正方體等.另外補(bǔ)臺(tái)成錐是常見(jiàn)的解決臺(tái)體側(cè)面積與體積的方法,由臺(tái)體的定義,我們?cè)谟行┣闆r下,可以將臺(tái)體補(bǔ)成錐體研究體積. 例4【四川省成都市雙流中學(xué)xx屆11月月考】已知三棱錐,是直角三角形,其斜邊,平面,,則三棱錐的外接球的表面積為( ) A. B. C. D. 【答案】A 點(diǎn)評(píng):本題主要考查三棱錐外接球表面積的求法,屬于難題.要求外接球的表面積和體積,關(guān)鍵是求出求的半徑,求外接球半徑的常見(jiàn)方法有:①若三條棱兩垂直則用(為三棱的長(zhǎng));②若面(),則(為外接圓半徑);③可以轉(zhuǎn)化為長(zhǎng)方體的外接球;④特殊幾何體可以直接找出球心和半徑. 綜合以上四類(lèi)問(wèn)題,立體幾何中的面積與體積問(wèn)題都是高考中的熱點(diǎn)問(wèn)題,在高考試題的新穎性越來(lái)越明顯,能力要求也越來(lái)越高,并且也越來(lái)越廣泛,從以上幾方面可以概括出在解決幾何體的表面積與體積問(wèn)題中的方法與技巧:幾何體的側(cè)面積和全面積:幾何體側(cè)面積是指(各個(gè))側(cè)面面積之和,而全面積是側(cè)面積與所有底面積之和.對(duì)側(cè)面積公式的記憶,最好結(jié)合幾何體的側(cè)面展開(kāi)圖來(lái)進(jìn)行.求體積時(shí)應(yīng)注意的幾點(diǎn):求一些不規(guī)則幾何體的體積常用割補(bǔ)的方法轉(zhuǎn)化成已知體積公式的幾何體進(jìn)行解決.與三視圖有關(guān)的體積問(wèn)題注意幾何體還原的準(zhǔn)確性及數(shù)據(jù)的準(zhǔn)確性.求組合體的表面積時(shí)注意幾何體的銜接部分的處理.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 難點(diǎn)2.7 立體幾何中的面積與體積教學(xué)案 2019 2020 年高 數(shù)學(xué) 二輪 復(fù)習(xí) 難點(diǎn) 2.7 立體幾何 中的 面積 體積 教學(xué)
鏈接地址:http://www.szxfmmzy.com/p-2623608.html