2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 不等式 第7課時 不等式的應(yīng)用教學(xué)案.doc
《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 不等式 第7課時 不等式的應(yīng)用教學(xué)案.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 不等式 第7課時 不等式的應(yīng)用教學(xué)案.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 不等式 第7課時 不等式的應(yīng)用教學(xué)案 基礎(chǔ)過關(guān) 2.能夠運用不等式的性質(zhì)、定理和方法分析解決有關(guān)函數(shù)的性質(zhì),方程實根的分布,解決涉及不等式的應(yīng)用問題和轉(zhuǎn)化為不等式的其它數(shù)學(xué)問題. 典型例題 例1.若關(guān)于x的方程4x+a2x+a+1=0有實數(shù)解,求實數(shù)a的取值范圍. 解:令t=2x(t>0),則原方程化為t2+at+a+1=0,變形得 變式訓(xùn)練1:已知方程sin2x-4sinx+1-a=0有解,則實數(shù)a的取值范圍是 ( ) A.[-3,6] B.[-2,6] C.[-3,2] D.[-2,2] 解:B 例2. 如圖,為處理含有某種雜質(zhì)的污水,要制造一底寬為2米的無蓋長方體沉淀箱,污水從A孔流入,經(jīng)沉淀后從B孔流出.設(shè)箱體的長度為a米,高度為b米.已知流出的水中該雜質(zhì)的質(zhì)量分數(shù)與a,b的乘積ab成反比.現(xiàn)有制箱材料60平方米.問當(dāng)a,b各為多少米時,經(jīng)沉淀后流出的水中該雜質(zhì)的質(zhì)量分數(shù)最小(A、B孔的面積忽略不計). 解法一:設(shè)y為流出的水中雜質(zhì)的質(zhì)量分數(shù),則y=,其中k>0為比例系數(shù).依題意,即所求的a,b值使y值最小. 根據(jù)題設(shè),有4b+2ab+2a=60(a>0,b>0), 得b=(0<a<30) ① 于是 y== ≥ 當(dāng)a+2=時取等號,y達到最小值. 這時a=6,a=-10(舍去). 將a=6代入①式得b=3. 故當(dāng)a為6米,b為3米時,經(jīng)沉淀后流出的水中該雜質(zhì)的質(zhì)量分數(shù)最小. 解法二:依題意,即所求的a,b的值使ab最大. 由題設(shè)知 4b+2ab+2a=60(a>0,b>0), 即 a+2b+ab=30(a>0,b>0). 因為 a+2b≥2, 所以 +ab≤30, 當(dāng)且僅當(dāng)a=2b時,上式取等號. 由a>0,b>0,解得0<ab≤18. 即當(dāng)a=2b時,ab取得最大值,其最大值為18. 所以2b2=18.解得b=3,a=6. 故當(dāng)a為6米,b為3米時,經(jīng)沉淀后流出的水中該雜質(zhì)的質(zhì)量分數(shù)最?。? 變式訓(xùn)練2:一批物資要用11輛汽車從甲地運到360千米外的乙地,若車速為v千米/小時,兩車的距離不能小于()2千米,運完這批物資至少需要 ( ) A.10小時 B.11小時 C.12小時 D.13小時 解:C 例3. 已知二次函數(shù)y=ax2+2bx+c,其中a>b>c且a+b+c=0. (1) 求證:此函數(shù)的圖象與x軸交于相異的兩個點. (2) 設(shè)函數(shù)圖象截x軸所得線段的長為l,求證:<l<2. 證明:(1)由a+b+c=0得b=-(a+c). Δ=(2b)2-4ac=4(a+c)2-4ac =4(a2+ac+c2)=4[(a+)2+c2]>0. 故此函數(shù)圖象與x軸交于相異的兩點. (2)∵a+b+c=0且a>b>c,∴a>0,c<0. 由a>b得a>-(a+c),∴>-2. 由b>c得-(a+c)>c,∴<-. ∴-2<<-. l=|x1-x2|=. 由二次函數(shù)的性質(zhì)知l∈(,2) 變式訓(xùn)練3:設(shè)函數(shù)f(x)=x2+2bx+c (c<b<1),f(1)=0,且方程f(x)+1=0有實根. (1)證明:-3<c≤-1且b≥0; (2)若m是方程f(x)+1=0的一個實根,判斷f(m-4)的正負,并加以證明. 證明:(1) 又c<b<1,故 又方程f(x)+1=0有實根,即x2+2bx+c+1=0有實根. 故△=4b2-4(c-1)≥0,即(c+1)2-4(c+1)≥0c≥3或c≤-1 由由 (2) f(m)=-1<0 ∴c<m<1 c-4<m-4<-3<c ∴f(m-4)=(m-4-c)(m-4-1)>0 ∴f(m-4)的符號為正. 例4. 一船由甲地逆水勻速行駛至乙地,甲乙兩地相距S(千米),水速為常量p(千米/小時),船在靜水中的最大速度為q(千米/小時)(q>p),已知船每小時的燃料費用(以元為單位)與船在靜水中速度v(千米/小時)的平方成正比,比例系數(shù)為k. ⑴ 把全程燃料費用y(元)表示為靜水中速度v的函數(shù),并求出這個函數(shù)的定義域. ⑵ 為了使全程燃料費用最小,船的實際前進速度應(yīng)為多少? 解:(1) y=kv2,v∈(p,q] (2) i) 2p≤q時,船的實際前進速度為p; ii) 2p>q時,船的實際前進速度為q-p. 變式訓(xùn)練4:某游泳館出售冬季游泳卡,每張240元,使用規(guī)定:不記名,每卡每次只限1人,每天只限1次.某班有48名同學(xué),老師們打算組織同學(xué)們集體去游泳,除需要購買若干張游泳卡外,每次游泳還要包一輛汽車,無論乘坐多少名同學(xué),每次的包車費均為40元,若使每個同學(xué)游泳8次,每人最少交多少錢? 解:設(shè)購卡x張,總費用y元. y=240(x+)≥3840 x=8時,ymin=3840 384048=80(元) 答:每人最少交80元錢. 歸納小結(jié) 小結(jié)歸納 不等式的應(yīng)用主要有兩類: ⑴ 一類是不等式在其它數(shù)學(xué)問題中的應(yīng)用,主要是求字母的取值范圍,這類問題所進行的必須是等價轉(zhuǎn)化.注意溝通各知識點之間的內(nèi)在聯(lián)系,活用不等式的概念、方法,融會貫通. ⑵ 一類是解決與不等式有關(guān)的實際問題,這類問題首先應(yīng)認真閱讀題目,理解題目的意義,注意題目中的關(guān)鍵詞和有關(guān)數(shù)據(jù),然后將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,即數(shù)學(xué)建模,再運用不等式的有關(guān)知識加以解決.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 不等式 第7課時 不等式的應(yīng)用教學(xué)案 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 課時 應(yīng)用 教學(xué)
鏈接地址:http://www.szxfmmzy.com/p-2654087.html