九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類 > PPT文檔下載  

求不定積分的幾種基本方法.ppt

  • 資源ID:2814018       資源大?。?span id="24d9guoke414" class="font-tahoma">2.09MB        全文頁(yè)數(shù):36頁(yè)
  • 資源格式: PPT        下載積分:9.9積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

求不定積分的幾種基本方法.ppt

5.2 求不定積分的幾種基本方法,一、 第一類換元法(湊微分法),,,,.,先看下例:,例1 求,解,設(shè),則,,,,,,一般地,如果,是,的一個(gè)原函數(shù),則,而如果,又是另一個(gè)變量,的函數(shù),且,可微,那么根據(jù)復(fù)合函數(shù)的微分法,有,由此得,,是具有原函數(shù),于是有如下定理:,定理1 設(shè),可導(dǎo),則,有換元公式,(5-2),由此可見,一般地,如果積分,不能直接,利用利用基本積分公式計(jì)算,而其被積表達(dá)式,能表示為,的形式,且,較易計(jì)算,那么可令,代入后有,這樣就得到了,的原函數(shù).這種積分稱為第一類換元法.,由于在積分過(guò)程中,先要從被積表達(dá)式中湊出一個(gè)積分,因子,因此第一類換元法也稱為湊微分法.,例2 求,解,,再以,代入,即得,例3 求,解 被積函數(shù),,可看成,,與,,構(gòu)成的復(fù)合,函數(shù),雖沒(méi)有,,這個(gè)因子,但我們可以湊出這個(gè)因子:,,,,如果令,,便有,,,,,,,,,,,,,一般地,對(duì)于積分,,,總可以作變量代換,,,把它化為,,,,,,,,,,,,,,,,,,,,,例4 求,解 令,則,,,,,,,,,,,,,,,,,,,例5 求,,解 令,,,則,,,有,,湊微分與換元的目的是為了便于利用基本積分公式.在,比較熟悉換元法后就可以略去設(shè)中間變量和換元的步驟.,,,,,例7 求,,,,,,,,,,,,,,例6 求,,解,,解,,,,,,,,,,,,,,,,,,,,,,,,解,,,,,例8 求,,,,,,,,,,,,,,,,,,,,,,,例9 求,,解,,類似地可得,,,,,,,,,,,,,,,,,,,,,,,,,,,,例10 求,,解,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,例11 求,,解,,類似地可得,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,類似地可得,,例12 求,,解,,例13 求,,解,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,第一類換元法有如下幾種常見的湊微分形式:,,(1),(2),(3),(4),,,(5),(6),(7),(8),,,,,(9),(10),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,二、 第二類換元法,第一類換元法是通過(guò)變量代換,,,將積分,,化為積分,,.第二類換元法是通,過(guò)變量代換,,,將積分,,化為積分,,,在求出后一個(gè)積分后,再以,,反函數(shù),,代回去,這樣換元積分公式可表示為:,,上述公式的成立是需要一定條件的,首先等式右邊,的不定積分要存在,即被積函數(shù),的,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,有原函數(shù);其次,,,的反函數(shù),,要存在.我們有下面的定理.,定理2 設(shè)函數(shù),,連續(xù),,,單調(diào)、可導(dǎo),并且,,,則有換元公式,,(5-3),下面舉例說(shuō)明公式(5-3)的應(yīng)用.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,例14 求,,解 遇到根式中是一次多項(xiàng)式時(shí),可先通過(guò)適當(dāng)?shù)膿Q,元將被積函數(shù)有理化,然后再積分.,令,,,則,,,故,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,例15 求,,解 令,,,則,,,則有,,,例16 求,解 為使被積函數(shù)有理化.利用三角公式,,令,,,則它是,,的單調(diào)可導(dǎo)函數(shù),,具有反函數(shù),,,且,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,因而,,,,例17 求,,解 令,,則,,于是,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,其中,,例18 求,,解 被積函數(shù)的定義域?yàn)?,,令,,,,,,,這時(shí),,故,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,其中,,,當(dāng),,時(shí),可令,,類似地可得到相同形式的結(jié)果.,以上三例中所作的變換均利用了三角恒等式,稱之為,三角代換,可將將被積函數(shù)中的無(wú)理因式化為三角函數(shù),的有理因式.一般地,若被積函數(shù)中含有,,時(shí),可,作代換,,或,,;含有,,時(shí),可作,代換,,;含有,,時(shí),可作代換,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,利用第二類換元法求不定積分時(shí),還經(jīng)常用到倒代換,即,,等.,例19 求,,解 令,,,則,因此,,當(dāng),時(shí),,,有,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,當(dāng),時(shí),,有,,綜合起來(lái),得,,在本節(jié)的例題中,有幾個(gè)積分結(jié)果是以后經(jīng)常會(huì)遇到,的.所以它們通常也被當(dāng)作公式使用.這樣,常用的積分,公式,除了基本積分表中的以外,再添加下面幾個(gè)(其中,常數(shù)a>0).,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,(14),(15),(16),(17),(18),,,,,,(19),(20),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,(21),,例20 求,解,,利用公式(18),可得,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,例21 求,,解,,利用公式(21),可得,,三 分部積分法,,,.,,一、 分部積分公式的推導(dǎo),思考:,,諸如此類的不定積分,用換元積分法都不能求解.,特點(diǎn): 被積函數(shù)是兩種不同類型的函數(shù)的乘積.,需要用到求不定積分的另一種基本方法――分部積分法.,設(shè)函數(shù),,及,,具有連續(xù)導(dǎo)數(shù).那么,,,移項(xiàng),得,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,對(duì)這個(gè)等式兩邊求不定積分,得,,(5-4),公式(5-4)稱為分部積分公式.,如果積分,,不易求,而積分,,比較容易時(shí),分部積分公式就可用了.,為簡(jiǎn)便起見,也可把公式(5-4)寫成下面的形式:,,(5-5),現(xiàn)在通過(guò)例子說(shuō)明如何運(yùn)用這個(gè)重要公式.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,例22 求,,解 由于被積函數(shù),,是兩個(gè)函數(shù)的乘積,選其中一,,那么另一個(gè)即為,,如果選擇,,,則,個(gè)為,,得,,如果選擇,,則,,得,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,上式右端的積分比原積分更不容易求出.,由此可見,如果,,和,,選取不當(dāng),就求不出結(jié)果.,所以應(yīng)用分部積分法時(shí),恰當(dāng)選取,和,是關(guān)鍵,,,一般以,比,,易求出為原則.,例23 求,,解,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,例24 求,,解,,由上面的三個(gè)例子知道,如果被積函數(shù)是指數(shù)為正整,數(shù)的冪函數(shù)和三角函數(shù)或指數(shù)函數(shù)的乘積,就可以考慮,用分部積分法,并選擇冪函數(shù)為,,,經(jīng)過(guò)一次積分,就,可以使冪函數(shù)的次數(shù)降低一次.,例25 求,,解,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,例26,,求,解,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,例27 求,,解,,總結(jié)上面四個(gè)例子可以知道,如果被積函數(shù)是冪函數(shù),和反三角函數(shù)或?qū)?shù)函數(shù)的乘積,就可以考慮用分部積分,,法,并選擇反三角函數(shù)或?qū)?shù)函數(shù)為,,一般地,如果被積函數(shù)是兩類基本初等函數(shù)的乘積,,在多數(shù)情況下,可按下列順序: 反三角函數(shù)、對(duì)數(shù)函數(shù)、,冪函數(shù)、三角函數(shù)、指數(shù)函數(shù),將排在前面的那類函,數(shù)選作,,,后面的那類函數(shù)選作,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,下面兩例中使用的方法也是比較典型的.,例28 求,,解,,,,,等式右端的積分與原積分相同,把它移到左邊與原積分,合并,可得,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,例29 求,,解,,,,,,所以,,

注意事項(xiàng)

本文(求不定積分的幾種基本方法.ppt)為本站會(huì)員(xt****7)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  sobing.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!