《整式的乘法》綜合檢測試卷及答案1.doc
《《整式的乘法》綜合檢測試卷及答案1.doc》由會員分享,可在線閱讀,更多相關《《整式的乘法》綜合檢測試卷及答案1.doc(5頁珍藏版)》請在裝配圖網上搜索。
《整式的乘法》同步測試 一、選擇題: 1.下列各式中,正確的是( ) A.t2t3 = t5 B.t4+t2 = t 6 C.t3t4 = t12 D.t5t5 = 2t5 2.下列計算錯誤的是( ) A.?a2(?a)2 = ?a4 B.(?a)2(?a)4 = a6 C.(?a3)(?a)2 = a5 D.(?a)(?a)2 = ?a3 3.下列計算中,運算正確的個數(shù)是( ) ?、?x3?x3 = x3 ② 3m2n = 6m+n ?、踑m+an = am+n ④xm+1xm+2 = xmxm+3 A.1 B. 2 C.3 D.4 4.計算a6(a2)3的結果等于( ) A.a11 B.a 12 C.a14 D.a36 5.下列各式計算中,正確的是( ) A.(a3)3 = a6 B.(?a5)4 = ?a 20 C.[(?a)5]3 = a15 D.[(?a)2]3 = a6 6.下列各式計算中,錯誤的是( ) A.(m6)6 = m36 B.(a4)m = (a 2m) 2 C.x2n = (?xn)2 D.x2n = (?x2)n 7.下列計算正確的是( ) A.(xy)3 = xy3 B.(2xy)3 = 6x3y3 C.(?3x2)3 = 27x5 D.(a2b)n = a2nbn 8.下列各式錯誤的是( ) A.(23)4 = 212 B.(? 2a)3 = ? 8a3 C.(2mn2)4 = 16m4n8 D.(3ab)2 = 6a2b2 9.下列計算中,錯誤的是( ) A.mnm2n+1 = m3n+1 B.(?am?1)2 = a 2m?2 C.(a2b)n = a2nbn D.(?3x2)3 = ?9x6 10.下列計算中,錯誤的是( ) A.(?2ab2)2(? 3a2b)3 = ? 108a8b7 B.(2xy)3(?2xy)2 = 32x5y5 C.(m2n)(?mn2)2 =m4n4 D.(?xy)2(x2y) = x4y3 11.下列計算結果正確的是( ) A.(6ab2? 4a2b)?3ab = 18ab2? 12a2b B.(?x)(2x+x2?1) = ?x3?2x2+1 C.(?3x2y)(?2xy+3yz?1) = 6x3y2?9x2y2z2+3x2y D.(a3?b)?2ab =a4b?ab2 12.若(x?2)(x+3) = x2+a+b,則a、b的值為( ) A.a = 5,b = 6 B.a = 1,b = ?6 C.a = 1,b = 6 D.a = 5,b = ?6 二、解答題: 1.計算 (1)(? 5a3b2)(?3ab 2c)(? 7a2b); (2)? 2a2b3(m?n)5ab2(n?m)2+a2(m?n)6ab2; (3) 3a2(ab2?b)?( 2a2b2?3ab)(? 3a); (4)(3x2?5y)(x2+2x?3). 2.當x = ?3時,求8x2?(x?2)(x+1)?3(x?1)(x?2)的值. 3.把一個長方形的長減少3,寬增加2,面積不變,若長增加1,寬減少1,則面積減少6,求長方形的面積. 4.(x+my?1)(nx?2y+3)的結果中x、y項的系數(shù)均為0,求 3m+n之值. 參考答案: 一、選擇題 1.A 說明: t4與t2不是同類項,不能合并,B錯;同底數(shù)冪相乘,底不變,指數(shù)相加,所以t3t4 = t3+4 = t7≠t12,C錯;t5?t5 = t5+5 = t10≠2t5,D錯;t2?t3 = t2+3 = t5,A正確;答案為A. 2.C 說明:?a2(?a)2 = ?a2a2 = ?a2+2 = ?a4,A計算正確;(?a)2(?a)4 = a2a4 = a2+4 = a6,B計算正確;(?a3)(?a)2 = ?a3a2 = ?a5≠a5,C計算錯誤;(?a)(?a)2 = ?aa2 = ?a3,D計算正確;所以答案為C 3.A 說明:5x3?x3 = (5?1)x3 = 4x3 ≠x3 ,①錯誤; 3m與2n 不是同底數(shù)冪,它們相乘把底數(shù)相乘而指數(shù)相加顯然是不對的,比如m = 1,n = 2,則 3m2n = 3122 = 34 = 12,而 6m+n = 61+2 = 63 = 216≠12,②錯誤;am與an只有在m = n時才是同類項,此時am+an = 2am≠am+n,而在m≠n時,am與an無法合并,③錯;xm+1xm+2 = xm+1+m+2 = xm+m+3 = xmxm+3,④正確;所以答案為A. 4.B 說明:a6(a2)3 = a6a23 = a6a6 = a6+6 = a12,所以答案為B. 5.D 說明:(a3)3 = a33 = a9,A錯;(?a5)4 = a54 = a20,B錯;[(?a)5]3 = (?a)53 = (?a)15 = ?a15,C錯;[(?a)2]3 = (?a)23 = (?a)6 = a6,D正確,答案為D. 6.D 說明:(m6)6 = m66 = m36,A計算正確;(a4)m = a 4m,(a 2m)2 = a 4m,B計算正確;(?xn)2 = x2n,C計算正確;當n為偶數(shù)時,(?x2)n = (x2)n = x2n;當n為奇數(shù)時,(?x2)n = ?x2n,所以D不正確,答案為D. 7.D 說明:(xy)3 = x3y3,A錯;(2xy)3 = 23x3y3 = 8x3y3,B錯;(?3x2)3 = (?3)3(x2)3 = ?27x6,C錯;(a2b)n = (a2)nbn = a2nbn,D正確,答案為D. 8.C 說明:(23)4 = 234 = 212,A中式子正確;(? 2a)3 = (?2) 3a3 = ? 8a3,B中式子正確;(3ab)2 = 32a2b2 = 9a2b2,C中式子錯誤;(2mn2)4 = 24m4(n2)4 = 16m4n8,D中式子正確,所以答案為C. 9.D 說明:mnm2n+1 = mn+2n+1 = m3n+1,A中計算正確;(?am?1)2 = a2(m?1) = a 2m?2,B中計算正確; (a2b)n = (a2)nbn = a2nbn,C中計算正確;(?3x2)3 = (?3)3(x2)3 = ?27x6,D中計算錯誤;所以答案為D. 10.C 說明:(?2ab2)2(? 3a2b)3 = (?2) 2a2(b2)2(?3)3(a2)3b3 = 4a2b4(?27)a6b3 = ? 108a2+6b4+3 = ? 108a8b7,A中計算正確;(2xy)3(?2xy)2 = (2xy)3(2xy)2 = (2xy)3+2 = (2xy)5 = 25x5y5 = 32x5y5,B中計算正確;(m2n)(? mn2)2 =m2n(?) 2m2(n2)2 =m2nm2n4 =m2+2n1+4 =m4n5,C中計算錯誤;(?xy)2(x2y) = (?)2x2y2x2y =x2y2x2y = x4y3,D中計算正確,所以答案為C. 11.D 說明:(6ab2? 4a2b)?3ab = 6ab23ab? 4a2b3ab = 18a2b3? 12a3b,A計算錯誤;(?x)(2x+x2?1) = ?x2x+(?x)x2?(?x) = ?2x2?x3+x = ?x3?2x2+x,B計算錯誤;(?3x2y)(?2xy+3yz?1) = (?3x2y) ? (?2xy)+(?3x2y) ?3yz?(?3x2y) = 6x3y2?9x2y2z+3x2y,C計算錯誤;(a3?b)?2ab = (a3) ?2ab?(b)?2ab =a4b?ab2,D計算正確,所以答案為D. 12.B 說明:因為(x?2)(x+3) = x?x?2x+3x?6 = x2+x?6,所以a = 1,b = ?6,答案為B. 二、解答題 1.解:(1)(? 5a3b2)(?3ab 2c)(? 7a2b) = [(?5)(?3)(?7)](a3aa2)(b2b2b)c = ? 105a6b 5c. (2)? 2a2b3(m?n)5ab2(n?m)2+a2(m?n)6ab2 = (?2)(a2a)(b3b2)[(m?n)5(m?n)2]+( 6)(a2a)(m?n)b2 = ?a3b5(m?n)7+ 2a3b2(m?n). (3) 3a2(ab2?b)?( 2a2b2?3ab)(? 3a) = 3a2ab2? 3a2b+ 2a2b2 3a?3ab 3a = a3b2? 3a2b+ 6a3b2? 9a2b = 7a3b2? 12a2b. (4)(3x2?5y)(x2+2x?3) = 3x2x2?5yx2+3x22x?5y2x+3x2(?3)?5y(?3) = 3x4?5x2y+6x3?10xy?9x2+15y = 3x4+6x3?5x2y?9x2?10xy+15y. 2. 解:8x2?(x?2)(x+1)?3(x?1)(x?2) = 8x2?(x2?2x+x?2)?3(x2?x?2x+2) = 8x2?x2+x+2?3x2+9x?6 = 4x2+10x?4. 當x = ?3時,原式 = 4(?3)2+10(?3)?4 = 36?30?4 = 2. 3. 解:設長方形的長為x,寬為y,則由題意有 即 解得 xy = 36. 答:長方形的面積是36. 4. 解:(x+my?1)(nx?2y+3) = nx2?2xy+3x+mnxy?2my2+3my?nx+2y?3 = nx2?(2?mn)xy?2my2+(3?n)x+( 3m+2)y?3 ∵x、y項系數(shù)為0, ∴得 故 3m+n = 3(?)+3 = 1.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 整式的乘法 整式 乘法 綜合 檢測 試卷 答案
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.szxfmmzy.com/p-2824749.html