2019-2020年高中數(shù)學(xué) 錯(cuò)誤解題分析 3-1-3 空間向量的數(shù)量積運(yùn)算.doc
-
資源ID:2884998
資源大?。?span id="24d9guoke414" class="font-tahoma">142.50KB
全文頁數(shù):4頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載

會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。
|
2019-2020年高中數(shù)學(xué) 錯(cuò)誤解題分析 3-1-3 空間向量的數(shù)量積運(yùn)算.doc
2019-2020年高中數(shù)學(xué) 錯(cuò)誤解題分析 3-1-3 空間向量的數(shù)量積運(yùn)算
1.對(duì)于向量a、b、c和實(shí)數(shù)λ,下列命題中的真命題是 ( ).
A.若ab=0,則a=0或b=0
B.若λa=0,則λ=0或a=0
C.若a2=b2,則a=b或a=-b
D.若ab=ac,則b=c
解析 對(duì)于A,可舉反例:當(dāng)a⊥b時(shí),ab=0;
對(duì)于C,a2=b2,只能推得|a|=|b|,而不能推出a=b;
對(duì)于D,ab=ac可以移項(xiàng)整理推得a⊥(b-c).
答案 B
2.如圖,已知空間四邊形每條邊和對(duì)角線長(zhǎng)都等于a,點(diǎn)E、F、G分別是AB、AD、DC的中點(diǎn),則下列向量的數(shù)量積等于a2的是 ( ).
A.2
B.2
C.2
D.2
解析 2=-a2,故A錯(cuò);2=-a2,故B錯(cuò);
2=-a2,故D錯(cuò),只有C正確.
答案 C
3.空間四邊形OABC中,OB=OC,∠AOB=∠AOC=,則cos〈,〉的值為 ( ).
A. B. C.- D.0
解析 因?yàn)椋?-)=-=||||cos〈,〉-
||||cos〈,〉,
又因?yàn)椤?,〉=〈,〉=?
||=||,所以=0,
所以⊥,所以cos〈,〉=0.
答案 D
4.已知a,b是空間兩個(gè)向量,若|a|=2,|b|=2,|a-b|=,則cos〈a,b〉=________.
解析 將|a-b|=化為(a-b)2=7,求得ab=,再由ab=|a||b|cos〈a,b〉求得
cos〈a,b〉=.
答案
5.已知空間向量a,b,c滿足a+b+c=0,|a|=3,|b|=1,|c|=4,則ab+bc+ca的值為________.
解析 ∵a+b+c=0,∴(a+b+c)2=0,∴a2+b2+c2+2(ab+bc+ca)=0,
∴ab+bc+ca=-=-13.
答案?。?3
6.已知長(zhǎng)方體ABCD-A1B1C1D1中,AB=AA1=2,AD=4,E為側(cè)面AA1B1B的中心,F(xiàn)為A1D1的中點(diǎn).求下列向量的數(shù)量積:
(1);(2)
解 如圖所示,設(shè)=a,=b,=c,
則|a|=|c|=2,|b|=4,ab=bc=ca=0.
(1)=(+)=b[(c-a)+b]
=|b|2=42=16.
(2)=(+)(+)
=(c-a+b)(a+c)=|c|2-|a|2=22-22=0.
7.已知在平行六面體ABCD-A1B1C1D1中,同一頂點(diǎn)為端點(diǎn)的三條棱長(zhǎng)都等于1,且彼此的夾角都是60,則此平行六面體的對(duì)角線AC1的長(zhǎng)為 ( ).
A. B.2 C. D.
解析:∵=++
∴2=(++)2=2+2+2+2+2+2=1+1
+1+2(cos 60+cos 60+cos 60)=6,∴||=.
答案:D
8.已知a,b是異面直線,A、B∈a,C、D∈b,AC⊥b,BD⊥b,且AB=2,CD=1,則a與b所成的角是 ( ).
A.30 B.45 C.60 D.90
解析 ∵=(++)=+||2+=||2=1,
∴cos〈,〉==,
∴a與b的夾角為60.
答案 C
9.已知|a|=3,|b|=4,m=a+b,n=a+λb,〈a,b〉=135,m⊥n,則λ=________.
解析 由m⊥n,得(a+b)(a+λb)=0,∴a2+(1+λ)ab+λb2=0,∴18+(λ+1)3
4cos 135+16λ=0,即4λ+6=0,∴λ=-.
答案?。?
10.如圖,已知正三棱柱ABC-A1B1C1的各條棱長(zhǎng)都相等,M是側(cè)棱CC1的中點(diǎn),則異面直線AB1和BM所成的角的大小是______.
解析 不妨設(shè)棱長(zhǎng)為2,則=-,=+,
cos〈,〉===
0,故填90.
答案 90
11.如圖所示,已知△ADB和△ADC都是以D為直角頂點(diǎn)的直角三角形,且AD=BD=CD,∠BAC=60.
求證:BD⊥平面ADC.
證明 不妨設(shè)AD=BD=CD=1,則AB=AC=.
=(-)=-,
由于=(+)==1,=||||cos 60=
=1.∴=0,即BD⊥AC,又已知BD⊥AD,AD∩AC=A,∴BD⊥平面ADC.
12.(創(chuàng)新拓展)如圖,正三棱柱ABC-A1B1C1中,底面邊長(zhǎng)為.
(1)設(shè)側(cè)棱長(zhǎng)為1,求證:AB1⊥BC1;
(2)設(shè)AB1與BC1的夾角為,求側(cè)棱的長(zhǎng).
(1)證明?。剑剑?
∵BB1⊥平面ABC,∴=0,=0.
又△ABC為正三角形,∴〈〉=π-〈〉=π-=.
∵=(+)(+)
=++2+
=||||cos〈,〉+2=-1+1=0,
∴AB1⊥BC1.
(2)解 結(jié)合(1)知=||||cos〈,〉+2=2-1.
又||=)2==||.
∴cos〈,〉==,
∴||=2,即側(cè)棱長(zhǎng)為2.