2019-2020年高中數(shù)學(xué) 初高中銜接教材 第三講 一元二次方程.doc
《2019-2020年高中數(shù)學(xué) 初高中銜接教材 第三講 一元二次方程.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 初高中銜接教材 第三講 一元二次方程.doc(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 初高中銜接教材 第三講 一元二次方程 現(xiàn)行初中數(shù)學(xué)教材主要要求學(xué)生掌握一元二次方程的概念、解法及應(yīng)用,而一元二次方程的根的判斷式及根與系數(shù)的關(guān)系,在高中教材中的二次函數(shù)、不等式及解析幾何等章節(jié)有著許多應(yīng)用.本節(jié)將對一元二次方程根的判別式、根與系數(shù)的關(guān)系進(jìn)行闡述. 一、一元二次方程的根的判斷式 一元二次方程,用配方法將其變形為: (1) 當(dāng)時(shí),右端是正數(shù).因此,方程有兩個(gè)不相等的實(shí)數(shù)根: (2) 當(dāng)時(shí),右端是零.因此,方程有兩個(gè)相等的實(shí)數(shù)根: (3) 當(dāng)時(shí),右端是負(fù)數(shù).因此,方程沒有實(shí)數(shù)根. 由于可以用的取值情況來判定一元二次方程的根的情況.因此,把叫做一元二次方程的根的判別式,表示為: 【例1】不解方程,判斷下列方程的實(shí)數(shù)根的個(gè)數(shù): (1) (2) (3) 解:(1) ,∴ 原方程有兩個(gè)不相等的實(shí)數(shù)根. (2) 原方程可化為: ,∴ 原方程有兩個(gè)相等的實(shí)數(shù)根. (3) 原方程可化為: ,∴ 原方程沒有實(shí)數(shù)根. 說明:在求判斷式時(shí),務(wù)必先把方程變形為一元二次方程的一般形式. 練:說出下列各方程的根的情況 (1) (2) (3) 【例2】已知關(guān)于的一元二次方程,根據(jù)下列條件,分別求出的范圍: (1) 方程有兩個(gè)不相等的實(shí)數(shù)根; (2) 方程有兩個(gè)相等的實(shí)數(shù)根 (3)方程有實(shí)數(shù)根; (4) 方程無實(shí)數(shù)根. 解: (1) ; (2) ; (3) ; (4) . 二、一元二次方程的根解法 進(jìn)一步地,在一元二次方程有實(shí)數(shù)根的前提下,該實(shí)數(shù)根具體是多?這就涉及到一元二次方程的根的求法 解法一(因式分解法)若可分解為, 那么由可得從而得到或 【典例】解一元二次方程 解:原方程可化為 故 練:解一元二次方程(1) (2) (3) 解法二(配方法)一元二次方程,用配方法將其變形為: 兩邊開方即可得到方程的根 【典例】解一元二次方程 解:原方程可化為 即 故 從而 即 練:解一元二次方程(1) (2) (3) 解法三(公式法)對于一元二次方程, (1) 當(dāng)時(shí),右端是正數(shù).因此,方程有兩個(gè)不相等的實(shí)數(shù)根: (2) 當(dāng)時(shí),右端是零.因此,方程有兩個(gè)相等的實(shí)數(shù)根: 【典例】解一元二次方程 解:由所以原方程有兩個(gè)不相等的實(shí)數(shù)根 所以即 練:解一元二次方程(1) (2) (3) 三、一元二次方程的根與系數(shù)的關(guān)系 一元二次方程的兩個(gè)根為: 所以:, 定理:如果一元二次方程的兩個(gè)根為,那么: 說明:一元二次方程根與系數(shù)的關(guān)系由十六世紀(jì)的法國數(shù)學(xué)家韋達(dá)發(fā)現(xiàn),所以通常把此定理稱為”韋達(dá)定理”.上述定理成立的前提是. 【例3】若是方程的兩個(gè)根,試求下列各式的值: (1) ; (2) ; (3) ; (4) . 分析:本題若直接用求根公式求出方程的兩根,再代入求值,將會出現(xiàn)復(fù)雜的計(jì)算.這里,可以利用韋達(dá)定理來解答. 解:由題意,根據(jù)根與系數(shù)的關(guān)系得: (1) (2) (3) (4) 說明:利用根與系數(shù)的關(guān)系求值,要熟練掌握以下等式變形: ,,, ,, 等等.韋達(dá)定理體現(xiàn)了整體思想. 練:若是方程的兩個(gè)根,試求下列各式的值 (1) (2) (3) ; (3) ; (4) ; (5) 練 習(xí) A 組 1.一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則的取值范圍是( ) A. B. C. D. 2.若是方程的兩個(gè)根,則的值為( ) A. B. C. D. 3.已知菱形ABCD的邊長為5,兩條對角線交于O點(diǎn),且OA、OB的長分別是關(guān)于的方程的根,則等于( ) A. B. C. D. 4.若是一元二次方程的根,則判別式和完全平方式的關(guān)系是( ) A. B. C. D.大小關(guān)系不能確定 5.若實(shí)數(shù),且滿足,則代數(shù)式的值為( ) A. B. C. D. 6.如果方程的兩根相等,則之間的關(guān)系是 ______ 7.已知一個(gè)直角三角形的兩條直角邊的長恰是方程的兩個(gè)根,則這個(gè)直角三角形的斜邊長是 _______ . 8.若方程的兩根之差為1,則的值是 _____ . 9.設(shè)是方程的兩實(shí)根,是關(guān)于的方程的兩實(shí)根,則= _____ ,= _____ . 10.已知實(shí)數(shù)滿足,則= _____ ,= _____ ,= _____ . 11.對于二次三項(xiàng)式,小明得出如下結(jié)論:無論取什么實(shí)數(shù),其值都不可能等于10.您是否同意他的看法?請您說明理由. 12.若,關(guān)于的方程有兩個(gè)相等的的正實(shí)數(shù)根,求的值. 13.已知關(guān)于的一元二次方程. (1) 求證:不論為任何實(shí)數(shù),方程總有兩個(gè)不相等的實(shí)數(shù)根; (2) 若方程的兩根為,且滿足,求的值. 14.已知關(guān)于的方程的兩根是一個(gè)矩形兩邊的長. (1) 取何值時(shí),方程存在兩個(gè)正實(shí)數(shù)根? (2) 當(dāng)矩形的對角線長是時(shí),求的值. B 組 1.已知關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根. (1) 求的取值范圍; (2) 是否存在實(shí)數(shù),使方程的兩實(shí)根互為相反數(shù)?如果存在,求出的值;如果不存在,請您說明理由. 2.已知關(guān)于的方程的兩個(gè)實(shí)數(shù)根的平方和等于11.求證:關(guān)于的方程有實(shí)數(shù)根. 3.若是關(guān)于的方程的兩個(gè)實(shí)數(shù)根,且都大于1. (1) 求實(shí)數(shù)的取值范圍; (2) 若,求的值. 第三講 一元二次方程根與系數(shù)的關(guān)系習(xí)題答案 A組 1. B 2. A 3.A 4.A 5.A 6. 7. 3 8. 9或 9. 10. 11.正確 12.4 13. 14. B組 1. (2) 不存在 2. (1)當(dāng)時(shí),方程為,有實(shí)根;(2) 當(dāng)時(shí),也有實(shí)根. 3.(1) ; (2) .- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 初高中銜接教材 第三講 一元二次方程 2019 2020 年高 數(shù)學(xué) 高中 銜接 教材 三講 一元 二次方程
鏈接地址:http://www.szxfmmzy.com/p-2914715.html