九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

標(biāo)準(zhǔn)閘門的底流畢業(yè)設(shè)計(jì)外文翻譯

  • 資源ID:29172403       資源大小:88.52KB        全文頁數(shù):7頁
  • 資源格式: DOC        下載積分:15積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要15積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。

標(biāo)準(zhǔn)閘門的底流畢業(yè)設(shè)計(jì)外文翻譯

外文原文Experiments in Fluids 27 (1999) 339350 Springer-Verlag 1999Underflow of standard sluice gateA. Roth, W. H. Hager1. IntroductionGates are a hydraulic structure that allows regulation of an upstream water elevation. Among a wide number of gate designs, the so-called standard gate with a vertical gate structure containing a standard crest positioned in an almost horizontal smooth rectangular channel has particular significance in low head applications. Surface roughness of both the channel and the gate is small and thus insignificant. Standard gates are used both in laboratories and in irrigation channels, large sewers or in hydraulic structures. Compared to overflow structures, or in particular to the sharp-crested weir, standard gates have received scarce attention. The knowledge is particularly poor regarding the basic hydraulics, whereas studies relating to vibration of these gates are available. The present project describes new findings on standard gate flow, involving: (1) Scale effects; (2) Coefficient of discharge; (3) Surface Ridge; (4) Features of shock waves; (5) Velocity field; (6) Bottom and gate pressure distributions; (7) Corner vortices; and (8) Vortex intensities. A novel device to reduce shock waves in the downstream channel is also proposed.2. Present knowledgeThe present knowledge on gates was recently summarized by Lewin (1995). There is a short chapter on vertical gates containing some information on discharge and contraction coefficients,with a relatively large scatter of data. This reflects the present state, and gate flow is far from being understood from this point of view, therefore. Historical studies on underflow gates are available, and it is currently a common belief that the discharge character is tics of vertical gates have been detailed in the past century. This is definitely not the case, because of the accuracy of discharge measurement, and the small hydraulic models often used. Well known approaches include those of Boileau (1848), Bor-nemann (1871, 1880), containing summaries of the experiments of Lesbros et al. Haberstroh (1890), Gibson (1920),Hurst and Watt (1925), Keutner (1932, 1935), Fawer (1937),Escande(1938), Gentilini(1941), and Smetana(1948). In these historical experimental studies, the exact geometrical configurations are often poorly specified, and the data are not always available. Details of gate fixation are also not described. The first modern study relating to free gate flow was conducted by Rajaratnam and Subramanya (1967). The coefficient of discharge was related to the difference of flow depths in the up- and downstream sections hCa, where o c h approach flow depth, coefficient of contraction and o c agate opening. According to observations for both free and submerged flow C is exclusively a function of the relative gated opening a/h , and C increases slightly as a/h increases,o d o starting from C0.595. The effect of skin friction was stated d to be there as on for deviations between computations based on the potential flow theory and observations. Rajaratnam (1977) conducted a second study on vertical gates in a rectangular channel 311mm wide, with gate openings between 26 and 101 mm. The axial free surface profile downstream of the gate section was shown to be self-similar. Nout sopoulos and Fanariotis (1978) pointed at the significant scatter of data relating to both coefficients of contraction and discharge. The deviations between observations and theory were attributed to the spatial flow characteristics, and the channels too small often used in laboratories. Nago(1978) made observation sina400 mm wide rectangular channel with a gate opening of 60 mm. C was found to decrease with increasing relative gate opening, from 0.595 for a/h 0 to 0.52 for a/h0.50.o o.Rajarat namand Humphries (1982) considered the free flow characteristics upstream of a vertical gate, as an addition to previous studies. The channel used was 311mm wide, and gate openings were a25 and 50 mm. Their data refer to the up stream recirculation zone, the bottom pressure distribution, and the velocity field. Montes (1997) furnished a solution for the 2D outflow using conformal mapping, compared the coefficient of contraction with experiments, and identified deviations due to viscosity effects. The surface profiles up and downstream rom the gate section were studied, exclusively in terms of gate opening. Energy losses across a gate were related to the boundary layer development and the spatial flow features upstream from the gate. The pur- pose of this paper is to clarify several points of standard gate flow, including the discharge coefficient, the ridge position, the velocity and pressure distributions, and the shock wave development that was not at all considered up till now. These results may attract and guide numerical modelers of flow. Their results and approaches have not been reviewed here.3 ExperimentsThe experiments were conducted in a 500 mm wide and 7 m long horizontal and rectangular channel. The width of the approach channel was also reduced to b245 and 350mm.The right hand side wall and the channel bottom were coated with PVC, and the left hand side was of glass to allow forvisualization. To improve the approach flow conditions, screens were inserted and surface waves were adequately reduced. The approach flow was thus without flow concentrations, smooth and always in the turbulent smooth regime. The discharge was measured with a V-notch weir located down-stream of the channel, to within $1% or $0.1 ls1,whichever was larger. An aluminum gate 499mm wide, 600mm high and 10 mm thick was used, of which the crest was of standard geometry, i.e. 2mm thick with a 45 bevel on the downstream side. The gate could be mounted with variable openings from the channel bottom. No gate slots were provided and water tightness was assured with a conventional tape. Only free gate flow was considered. The gate opening was varied from a10120mm. Prefabricated elements of a specified height ($0.1 mm) were slid below the gate, and removed after the gate was positioned. This procedure was found to be accurate compared to the opening measurement of a positioned gate. Free surface profiles were measured with a point gage of $0.5 mm reading accuracy. Due to free surface turbulence, flow depths could be read only to the nearest mm. For the shock waves described below, turbulence effects were larger, and the reading accuracy was within $2 mm. The reading position was determined with a meter along the channel; to within $5 mm. Velocities were measured with a miniature propeller meter of 8 mm internal diameter to within $5%. In addition, particle image velocimetry (PIV) was used to determine the velocity field in the vicinity of the gate section. Pressure heads on the channel bottom and on the standard gate were measuredwithamanometer, towithin$2 mm. The diameter of the pressure tapings was 1mm.The experimental program aimed at analyzing the effects of scale, the free surface profile, the development of corner eddies, the determination and reduction of shock waves, and the velocity and pressure characteristics in the gate vicinity. These items are discussed in the following.中文翻譯標(biāo)準(zhǔn)閘門的底流達(dá)羅斯,WH海格流體實(shí)驗(yàn)27 (1999)339-350 施普林格出版社 1999年1導(dǎo)言閘門是一種可以控制上游水位高程的的水工建筑物。在大量的閘門設(shè)計(jì)中,配備有垂直門結(jié)構(gòu)的結(jié)構(gòu)被叫做標(biāo)準(zhǔn)閘門,這種閘門包含一個(gè)在有幾乎橫向平穩(wěn)矩形通道的低水頭設(shè)計(jì)中具有特別顯著作用的一個(gè)標(biāo)準(zhǔn)的波峰位置。渠道和閘門的表面粗糙度都很小,因此在設(shè)計(jì)重的作用微不足道,很少為人們?cè)谠O(shè)計(jì)中考慮。標(biāo)準(zhǔn)閘門經(jīng)常被應(yīng)用在實(shí)驗(yàn)室、灌溉渠道、大型污水渠,或在其他水工建筑物上。然而與溢流結(jié)構(gòu),或者普通的堰流結(jié)構(gòu)相比較,標(biāo)準(zhǔn)閘門極少被人們關(guān)注。就它的基本水利知識(shí)而言,很多和閘門相關(guān)聯(lián)的震動(dòng)電子掃描數(shù)據(jù)卻是可以得到的。最近的關(guān)于標(biāo)準(zhǔn)閘門水流的在討論中的新文件涉及:(1)規(guī)模效應(yīng);(2)系數(shù)的修正;(3)表面的隆起的影響;(4)振動(dòng)波的特性;(5)速度場(chǎng);(6)閘門和門底部的壓力分布;(7)角落落渦;(8)渦強(qiáng)度。最近一種新穎的可以減少下游渠道振動(dòng)波的設(shè)備也被人們提出來,因此可以說閘門是一種急需研究而且很有前途的研究項(xiàng)目。2目前知識(shí)盧因最近(1995)做了大量的研究,并總結(jié)了關(guān)于閘門的知識(shí)。在我們這里有一個(gè)關(guān)于垂直閘門系數(shù)的修正與收縮的章節(jié),里面包含有大量的相關(guān)數(shù)據(jù)。這些反應(yīng)了閘門的目前狀況,通過這些數(shù)據(jù)我們知道自己對(duì)閘門水流的研究還遠(yuǎn)遠(yuǎn)不夠。因?yàn)橄乱绲臍v史資料是我們是可以獲得的,因此人們普遍認(rèn)為垂直閘門的修正在上個(gè)世紀(jì)已經(jīng)被做了深入的研究,因此已經(jīng)沒有繼續(xù)深入研究的必要了。這并不是真正的實(shí)情,隨著現(xiàn)代測(cè)量的精確性提高了,一些小的工程也變得簡(jiǎn)單,因此人們認(rèn)為我們已經(jīng)可以不做任何研究了。最近水閘研究的知名的成果包括布瓦洛( 1848 ),鄭伯艾曼(1871,1880 )的研究成果,其中載有哈伯斯特羅兄弟的實(shí)驗(yàn)成果摘要( 1890 ),吉布森( 1920 ),赫斯特和瓦特( 1925 ),克吳特(1932 ,1935),法爾( 1937 ),艾斯坎德( 1938 ),根體利尼( 1941 )以及斯美塔那( 1948年) 。在以往實(shí)驗(yàn)研究中,試驗(yàn)的過程很不嚴(yán)禁,確切的幾何配置常常被人們胡亂的制定,而且試驗(yàn)的數(shù)據(jù)也常常流失掉了,因此試驗(yàn)的結(jié)果很值得懷疑。而且閘門固定的詳細(xì)數(shù)據(jù)也沒有被人們嚴(yán)謹(jǐn)?shù)闹贫ā,F(xiàn)代的關(guān)于閘門水流研究被瑞加納木和蘇布曼娜引領(lǐng)(1967),得出水閘的系數(shù)修正與上游和下游的水位高度有關(guān)。實(shí)驗(yàn)過程中的水位深度接近實(shí)際水流流動(dòng)水深,閘門的開啟以及收縮的系數(shù)修正也在試驗(yàn)中被提出并被實(shí)測(cè)出。根據(jù)觀察自由水流以及淹沒水流的相關(guān)的閘門開啟,得出隨著排放的增加淹沒收縮系數(shù)從0.595開始的輕微增加。對(duì)于表皮摩擦的影響,是人們根據(jù)假設(shè)或者潛在的勢(shì)的流理論和意見的偏差提出的。瑞安(1977)對(duì)垂直閘門進(jìn)行了第二次研究,研究是在一個(gè)寬311,閘門開度在26到101 mm的渠道上進(jìn)行的。自由表空閘門部分的軸承最后得出是本質(zhì)相同的。奴頭波波和凡瑞逖斯(1978)指出他們?cè)谥匾某晒⒐_了收縮系數(shù)以及系數(shù)修正的詳細(xì)數(shù)據(jù)。從數(shù)據(jù)中得出理論與實(shí)際數(shù)據(jù)的偏差常常是因?yàn)樗鞯目臻g結(jié)構(gòu)特性,以及實(shí)驗(yàn)室運(yùn)用的管道往往比較細(xì)小的原因。納革(1978)觀察了一條400寬,閘門開度為60 mm.的渠道.結(jié)果發(fā)現(xiàn)系數(shù)隨著相關(guān)閘門開度的增加而從0.595減小到0.50. 作為對(duì)以前研究的增加,瑞安和哈普瑞斯(1982)認(rèn)為自由水流的特性改變了上游垂直閘門的性質(zhì)。這種渠道的寬度是311,閘門開度是從25到50。這些數(shù)據(jù)包含了向上游回流的區(qū)域,基地壓力的再分配區(qū)以及速度場(chǎng)。莫特斯(1997)提出了一種解決溢流的方法,這種方法運(yùn)用投影圖和收縮系數(shù)的比較來試驗(yàn),而且辨別出誤差的產(chǎn)生是由于液流的粘滯性。這次研究對(duì)上游和下游表面輪廓,特別是閘門的開度進(jìn)行了研究。過閘水頭損失與邊界層流的發(fā)展?fàn)顩r,以及上游閘門水流的空間結(jié)構(gòu)有關(guān)。這篇論文的目的是澄清幾個(gè)關(guān)于閘門水流的問題,包括:系數(shù)的修正;分水嶺;速度和壓力的重分布;以及那些最近才被人們充分考慮的震動(dòng)波的發(fā)展。這些結(jié)果也許會(huì)引導(dǎo)現(xiàn)在的數(shù)據(jù)模擬。它們的結(jié)果和成就在這兒還沒有被回顧總結(jié)。3試驗(yàn)這個(gè)試驗(yàn)是在一個(gè)500 mm寬7米長的水平長方形渠道上進(jìn)行的。相近的試驗(yàn)的渠道寬度也被減縮到了245 到 350 mm。右手邊的墻體和閘底也被涂上了一層聚氯乙烯,而卻左手邊被按了玻璃以使我們能夠觀察清楚。為了提高水流的觀察條件,窗格被關(guān)閉以使表面的波浪盡量的減少。這種近似的水流就沒有了中心水頭損失,而且光滑度也經(jīng)常在紊流的范圍之內(nèi)。修正系數(shù)通過渠道下游V型堰流來測(cè)定,以確定$1% or $0.1 ls1那個(gè)更大一點(diǎn)。一個(gè)499mm寬,600mm高,10mm厚的鋁板也被運(yùn)用在試驗(yàn)過程中,以使水流中的波峰成為2mm厚而且向下游傾斜45的標(biāo)準(zhǔn)的幾何形狀。閘門可以安裝得可以對(duì)閘底可變的開度。沒有門槽和水流密實(shí)度可以經(jīng)過一個(gè)管理來測(cè)定,只有自由過閘水流被仔細(xì)考慮。閘門的開度時(shí)靈活的,從10mm到120mm。預(yù)制件的指定高度將比閘門的高度底0.1 mm,而且在閘門落成后將會(huì)被移走。與固定位置的開度測(cè)量比較,這種步驟被發(fā)現(xiàn)是比較準(zhǔn)卻的。自由表面輪廓測(cè)量點(diǎn)的測(cè)量?jī)x讀數(shù)有0.5毫米誤差。由于自由水面的渦流的存在,水流的深度只能被估讀到毫米。由于下部紊動(dòng)波的影響,渦流的影響就更大了,而且估讀的誤差就增大到了2mm。讀數(shù)的位置確定為渠道的一米,誤差在5mm內(nèi)。速度時(shí)用一個(gè)微型的儀表來測(cè)量,測(cè)量的8 mm的內(nèi)部放大率,誤差保證在5%以內(nèi)。而且,少量的微型圖像也被運(yùn)用在靠近閘門的速度場(chǎng)中。作用在閘底和標(biāo)準(zhǔn)閘門的壓力運(yùn)用壓力記來測(cè)量,誤差在2mm內(nèi)。壓力計(jì)的直徑是1mm。這次試驗(yàn)的目的是為了分析刻度的影響,自由束流的表面,邊角渦流的發(fā)展,振動(dòng)波的決定因素以及減少和閘門附近速度和壓力的特性。這些項(xiàng)目在下面將被一一介紹。

注意事項(xiàng)

本文(標(biāo)準(zhǔn)閘門的底流畢業(yè)設(shè)計(jì)外文翻譯)為本站會(huì)員(仙***)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!