模糊邏輯與模糊控制畢業(yè)設(shè)計(jì)外文翻譯
《模糊邏輯與模糊控制畢業(yè)設(shè)計(jì)外文翻譯》由會(huì)員分享,可在線閱讀,更多相關(guān)《模糊邏輯與模糊控制畢業(yè)設(shè)計(jì)外文翻譯(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 外文文獻(xiàn)原稿和譯文 原 稿 Introduction In the modern industrial control field, along with the rapid development of computer technology, the emergence of a new trend of intelligent control, namely to machine simulation human thinking mode, using reasoning, deduce and induction, so the means, the prod
2、uction control, this is artificial intelligence. One expert system, fuzzy logic and neural network is the artificial intelligence of several key research hot spot. Relative to the expert system, the fuzzy logic belongs to the category of computational mathematics and contain the genetic algorithm, t
3、he chaos theory and linear theory etc, it comprehensive of operators practice experience, has the design is simple and easy to use, strong anti-interference ability and reaction speed, easy to control and adaptive ability, etc. In recent years, in a process control, built to touch, estimation, ident
4、ify, diagnosis, the stock market forecast, agricultural production and military sciences to a wide range of applications. To carry out in-depth research and application of fuzzy control technology, the paper introduces the basic theory of fuzzy control technology and development, and to some in the
5、application of the power electronics are introduced. Fuzzy Logic and Fuzzy Control 1, fuzzy logic and fuzzy control concept In 1965, the university of California, Berkeley, computer experts Lofty Zadeh put forward "fuzzy logic" concept, the root lies in the areas logic or clear logic distribut
6、ion, used to define the confused, unable to quantify or the problem of precision, for ˙ in a mans von based on "true-false" reasoning mechanism, and thus create a electronic circuit and integrated circuit of the Boolean algorithm, fuzzy logic to fill the gaps in special things in sampling and analys
7、is of blank. On the basis of fuzzy logic fuzzy set theory, a particular things as the set of features membership, he can be in "is" and "no" within the scope of the take between any value. And fuzzy logic is reasonable quantitative mathematical theory, the mathematical basis for fundamental for is t
8、o deal with these the statistical uncertain imprecise information. Fuzzy control based on fuzzy logic is a process of description of the control algorithm. For parameters precisely known mathematical model, we can use Berd graph or chart to analysts the Nyquist process to obtain the accurate desig
9、n parameters. And for some complex system, such as particle reaction, meteorological forecast equipment, establishing a reasonable and accurate mathematical model is very difficult, and for power transmission speed of vector control problems, although it can be measured by the model that, but for ma
10、ny variables and nonlinear variation, the accurate control is very difficult. And fuzzy control technology only on the basis of the practical experience and the operator and intuitive inference, also relies on design personnel and research and development personnel of experience and knowledge accumu
11、lation, it does not need to establish equipment model, so basically is adaptive, and have strong robustness. After many years development, there have been many successful application of the fuzzy control theory of the case, such as Rutherford, Carter and Ostergaard were applied and metallurgical fur
12、nace and heat exchangers control device. 2, the analysis method is discussed Industrial control stability of the system is discussed the premise of the problem, because of the nonlinear and not to the unity of the description, make a judgment, so the fuzzy control system analysis method of stabi
13、lity analysis has been a hot spot, comprehensive in recent years you of scholars paper published the system stability analysis has these several circumstances : 1), LiPuYa panov method: direct method based on the discrete time (D-T) and continuous time fuzzy control stability analysis and design m
14、ethod, the stability condition of the relative comparison conservative. 2), sliding variable structure system analysis method 3), round stability criterion methods: use sector bounded nonlinear concept, according to the stability criterion, led to the stability of the fuzzy control. 4), POPOV
15、criterion 5), other methods such as relationship matrix analysis, exceed stable theory, phase-plane, matrix inequality or convex optimization method, fuzzy hole-hole mapping etc, detailed information and relevant literature many, in this one no longer etc. Set Design of Fuzzy Control The desig
16、n of the fuzzy control is a very complicated process, in general, take the design steps and tools is more normative. The fuzzy controller general use of the special software and hardware, universal hardware chip in on the market at present is more, including main products are shown below. And specia
17、l IC has developed very fast, it special IC and software controller integrates in together. In the process of design, the design of the general to take steps for: 1, considering whether the subject by fuzzy control system. That is considered the routine control mode of may. 2, from equipment o
18、peration personnel place to get as much information. 3 and selecting the mathematical model could, if use the conventional method design, estimate the equipment performance characteristics. 4, determine the fuzzy logic control object. 5, determine the input and output variables. 6, determine
19、 the variables as determined the belonging of the range. 7, confirm the variables of the corresponding rules. 8, determine the scale coefficients. 9, if have a ready-made, mathematical model of fuzzy controller with already certain of system simulation, observation equipment performance, and c
20、onstantly adjust rules and scale coefficients until reaching satisfaction performance. Or to design fuzzy controller. 10, real-time operation controller, constantly adjust to the best performance. Fuzzy Control Application and Prospect As artificial intelligence of a new research field, the fu
21、zzy control absorb lessons from the traditional design method and other new technologys essence, in many fields has made considerable progress. In the new type of power electronic and automatic control system, some experts in the linear adding the conditions of the power amplifier, the application o
22、f the fuzzy control based on the servo motor control, in the fuzzy control system with the PID and model reference adaptive control (MRAC) comparison proved the advantages of the method of fuzzy control. Fuzzy turn sent gain tuned controller views of the induction motor drive system vector control
23、 Fuzzy control as a is the development of new technology, now in most experts also to focus on application system research, and make considerable achievement, but in the theory research and system analysis or relative backward, so much so that some scholars have questioned its theoretical basis and
24、effective. In view of this can be clear that the fuzzy control the combination of theory and practice is still needs to be further explored. The development prospects are very attractive, and in recent years, its theoretical study also made significant progress. In the past forty years of the develo
25、pment process, the fuzzy control also has some limitations: 1) control precision low, performance is not high, stability is poorer; 2) theory system is not complete. 3) the adaptive ability low. For these weaknesses, the fuzzy control and some other new technology, such as neural network (NN), genet
26、ic algorithm, and the combination of to a higher level of application development expand the huge space. Summary Fuzzy control as a comprehensive application example, in the global information the push of wave, in the next few decades, to the rapid development of economy will inject new vitality
27、, the expert thinks, the next generation of industrial control is the basis of fuzzy control and neural network, and chaos theory as the pillar of the artificial intelligence. With the fuzzy control theory research and further more perfect of, the scope of application of the growing and supporting t
28、he development and manufacture of IC, the fuzzy control will be open to the field of industrial automation development of light application prospect, but also to the various areas of the researchers suggest more important task. 譯 文 引言 在現(xiàn)代工業(yè)控制領(lǐng)域,伴隨著計(jì)算機(jī)技術(shù)的突飛猛進(jìn),出現(xiàn)了智能控制的新趨勢(shì),即以
29、機(jī)器模擬人類思維模式,采用推理、演繹和歸納等手段,進(jìn)行生產(chǎn)控制,這就是人工智能。其中專家系統(tǒng)邏輯和神經(jīng)網(wǎng)絡(luò)是人工智能的幾個(gè)重點(diǎn)研究熱點(diǎn)。相對(duì)于專家系統(tǒng),模糊邏輯屬于計(jì)算數(shù)、模糊學(xué)的范疇,包含遺傳算法,混沌理論及線性理論等內(nèi)容,它綜合了操作人員的實(shí)踐經(jīng)驗(yàn),具有設(shè)計(jì)簡(jiǎn)單,易于應(yīng)用、抗干擾能力強(qiáng)、反應(yīng)速度快、便于控制和自適應(yīng)能力強(qiáng)等優(yōu)點(diǎn)。近年來(lái),在過(guò)程控制、建摸、估計(jì)、辯識(shí)、診斷、股市預(yù)測(cè)、農(nóng)業(yè)生產(chǎn)和軍事科學(xué)等領(lǐng)域得到了廣泛應(yīng)用。為深入開(kāi)展模糊控制技術(shù)的研究應(yīng)用,本文綜合介紹了模糊控制技術(shù)的基本理論和發(fā)展?fàn)顩r,并對(duì)一些在電力電子領(lǐng)域的應(yīng)用作了簡(jiǎn)單介紹。 模糊邏輯與模糊控制 1.模糊邏輯與模糊控制
30、的概念 1965年,加州大學(xué)伯克利分校的計(jì)算機(jī)專家Lofty Zadeh提出“模糊邏輯”的概念,其根本在于區(qū)分布爾邏輯或清晰邏輯,用來(lái)定義那些含混不清,無(wú)法量化或精確化的問(wèn)題,對(duì)于馮˙諾依曼開(kāi)創(chuàng)的基于“真-假”推理機(jī)制,以及因此開(kāi)創(chuàng)的電子電路和集成電路的布爾算法,模糊邏輯填補(bǔ)了特殊事物在取樣分析方面的空白。在模糊邏輯為基礎(chǔ)的模糊集合理論中,某特定事物具有特色集的隸屬度,他可以在“是”和“非”之間的范圍內(nèi)取任何值。而模糊邏輯是合理的量化數(shù)學(xué)理論,是以數(shù)學(xué)基礎(chǔ)為為根本去處理這些非統(tǒng)計(jì)不確定的不精確信息。 模糊控制是基于模糊邏輯描述的一個(gè)過(guò)程的控制算法。對(duì)于參數(shù)精確已知的數(shù)學(xué)模型,我們可以用Be
31、rd圖或者Nyquist圖來(lái)分析家其過(guò)程以獲得精確的設(shè)計(jì)參數(shù)。而對(duì)一些復(fù)雜系統(tǒng),如粒子反應(yīng),氣象預(yù)報(bào)等設(shè)備,建立一個(gè)合理而精確的數(shù)學(xué)模型是非常困難的,對(duì)于電力傳動(dòng)中的變速矢量控制問(wèn)題,盡管可以通過(guò)測(cè)量得知其模型,但對(duì)于多變量的且非線性變化,起精確控制也是非常困難的。而模糊控制技術(shù)僅依據(jù)與操作者的實(shí)踐經(jīng)驗(yàn)和直觀推斷,也依靠設(shè)計(jì)人員和研發(fā)人員的經(jīng)驗(yàn)和知識(shí)積累,它不需要建立設(shè)備模型,因此基本上是自適應(yīng)的,具有很強(qiáng)的魯棒性。歷經(jīng)多年發(fā)展,已有許多成功應(yīng)用模糊控制理論的案例,如Rutherford,Carter 和Ostergaard分別應(yīng)用與冶金爐和熱交換器的控制裝置。 2.分析方法探討 工業(yè)控制
32、系統(tǒng)的穩(wěn)定性是探討問(wèn)題的前提,由于難以對(duì)非線性和不統(tǒng)一的描述,做出判斷,因此模糊控制系統(tǒng)的分析方法的穩(wěn)定性分析一直是一個(gè)熱點(diǎn),綜合近年來(lái)各位學(xué)者的發(fā)表的論文,目前系統(tǒng)穩(wěn)定性分析有以下集中: 1), 李普亞諾夫法:基于直接法的離散時(shí)間(D-T)和連續(xù)時(shí)間模糊控制的穩(wěn)定性分析和設(shè)計(jì)方法,相對(duì)而言起穩(wěn)定條件比價(jià)保守。 2),滑動(dòng)變結(jié)構(gòu)系統(tǒng)分析法 3),圓穩(wěn)定性判據(jù)方法:利用扇區(qū)有界非線性概念,根據(jù)穩(wěn)定判據(jù)可推導(dǎo)模糊控制的穩(wěn)定性. 4),POPOV判據(jù) 5),其他方法如關(guān)系矩陣分析法,超穩(wěn)定理論,相平面法,矩陣不等式或凸優(yōu)化法,模糊穴穴映射等,詳細(xì)資料及有關(guān)文獻(xiàn)很多,在這里不再一一闡述。
33、模糊控制的設(shè)置設(shè)計(jì) 模糊控制的設(shè)計(jì)是一個(gè)非常復(fù)雜的過(guò)程,一般而言,采取的設(shè)計(jì)步驟和工具比較規(guī)范。其中模糊控制器一般采用專用軟硬件,通用型的硬件芯片在目前市場(chǎng)上比較多,其中主流產(chǎn)品如下表所示。而專用IC發(fā)展也很迅速,它把專用IC和軟件控制器集成在一起。 設(shè)計(jì)過(guò)程中,一般采取的設(shè)計(jì)步驟為: 1,綜合考慮該課題能否采用模糊控制系統(tǒng)。即考慮采用常規(guī)控制方式的可能。 2,從設(shè)備操作人員處獲取盡可能多的信息。 3,選取可能的數(shù)學(xué)模型,如果用常規(guī)方法設(shè)計(jì),估計(jì)設(shè)備的性能特點(diǎn)。 4,確定模糊邏輯的控制對(duì)象。 5,確定輸入輸出變量。 6,確定所確定的各個(gè)變量的歸屬范圍。 7,確定各變量的對(duì)應(yīng)規(guī)
34、則。 8,確定比例系數(shù)。 9,如果有現(xiàn)成的數(shù)學(xué)模型,用已確定的模糊控制器對(duì)系統(tǒng)仿真,觀測(cè)設(shè)備性能,并不斷調(diào)整規(guī)則和比例系數(shù)直到達(dá)到滿意性能。否則重新設(shè)計(jì)模糊控制器。 10,實(shí)時(shí)運(yùn)行控制器,不斷調(diào)整以達(dá)到最佳性能。 模糊控制應(yīng)用與前景展望 作為人工智能的一種新研究領(lǐng)域,模糊控制吸收借鑒了傳統(tǒng)設(shè)計(jì)方法和其他新技術(shù)的精華,在諸多領(lǐng)域取得了長(zhǎng)足的進(jìn)展。在新型的電力電子和自動(dòng)控制系統(tǒng)中,有些專家在線性功放的加設(shè)條件下,把模糊控制應(yīng)用于為基礎(chǔ)的伺服電機(jī)控制中,在把模糊控制系統(tǒng)與PID及模型參考自適應(yīng)控制(MRAC)進(jìn)行比較后證明了模糊控制方法的優(yōu)越性。 模糊控制作為一項(xiàng)正在發(fā)展的新技術(shù),目前在
35、大多數(shù)專家還把主要精力放在應(yīng)用系統(tǒng)研究上,并取得了相當(dāng)?shù)某晒?,但在理論研究和系統(tǒng)分析上還是相對(duì)落后的,以至于一些學(xué)者質(zhì)疑其理論依據(jù)和有效性。鑒于此可以明確得知:模糊控制理論和實(shí)踐的結(jié)合仍有待于進(jìn)一步探索。其發(fā)展前景是十分誘人的,而且在近年來(lái),其理論研究也取得了顯著進(jìn)展。在近四十年的發(fā)展進(jìn)程中,模糊控制也有一些局限性:1、控制精度低,性能不高,穩(wěn)定性較差;2、理論體系不完整;3、自適應(yīng)能力低。對(duì)于這些弱點(diǎn),模糊控制與一些其他新技術(shù),比如神經(jīng)網(wǎng)絡(luò)(NN),遺傳算法相結(jié)合,向更高層次的應(yīng)用發(fā)展拓展了巨大的空間。 總結(jié) 模糊控制作為一門綜合應(yīng)用范例,在全球信息化浪潮的推動(dòng)下,在未來(lái)的幾十年中,必將對(duì)經(jīng)濟(jì)的迅猛發(fā)展注入新的活力,有專家認(rèn)為,下一代工控的基礎(chǔ)是模糊控制,神經(jīng)網(wǎng)絡(luò),混沌理論為支柱的人工智能。隨著模糊控制理論研究的日益完善和深入,應(yīng)用范圍的日益擴(kuò)大和配套IC的研發(fā)制造,模糊控制將給工控領(lǐng)域的發(fā)展開(kāi)辟光明的應(yīng)用前景,同時(shí)也給各領(lǐng)域的研究人員提出了更重大的任務(wù)。 7
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第七章-透射電子顯微鏡
- 群落的結(jié)構(gòu)(課件)
- 焊接基礎(chǔ)知識(shí)
- 水文地質(zhì)學(xué)課件
- 某公司員工工傷安全管理規(guī)定
- 消防培訓(xùn)課件:安全檢修(要點(diǎn))
- 某公司安全生產(chǎn)考核與獎(jiǎng)懲辦法范文
- 安全作業(yè)活動(dòng)安全排查表
- 某公司危險(xiǎn)源安全辨識(shí)、分類和風(fēng)險(xiǎn)評(píng)價(jià)、分級(jí)辦法
- 某公司消防安全常識(shí)培訓(xùn)資料
- 安全培訓(xùn)資料:危險(xiǎn)化學(xué)品的類別
- 中小學(xué)寒假學(xué)習(xí)計(jì)劃快樂(lè)度寒假充實(shí)促成長(zhǎng)
- 紅色插畫(huà)風(fēng)輸血相關(guān)知識(shí)培訓(xùn)臨床輸血流程常見(jiàn)輸血不良反應(yīng)
- 14.應(yīng)急救援隊(duì)伍訓(xùn)練記錄
- 某公司各部門及人員安全生產(chǎn)責(zé)任制