九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

山東省臨朐縣實驗中學2014年高中數(shù)學 平面向量基本定理教案 新人教A版必修

上傳人:每**** 文檔編號:30006495 上傳時間:2021-10-09 格式:DOC 頁數(shù):5 大?。?04.50KB
收藏 版權(quán)申訴 舉報 下載
山東省臨朐縣實驗中學2014年高中數(shù)學 平面向量基本定理教案 新人教A版必修_第1頁
第1頁 / 共5頁
山東省臨朐縣實驗中學2014年高中數(shù)學 平面向量基本定理教案 新人教A版必修_第2頁
第2頁 / 共5頁
山東省臨朐縣實驗中學2014年高中數(shù)學 平面向量基本定理教案 新人教A版必修_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

8 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《山東省臨朐縣實驗中學2014年高中數(shù)學 平面向量基本定理教案 新人教A版必修》由會員分享,可在線閱讀,更多相關《山東省臨朐縣實驗中學2014年高中數(shù)學 平面向量基本定理教案 新人教A版必修(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 山東省臨朐縣實驗中學2014年高中數(shù)學 平面向量基本定理教案 新人教A版必修4 一、教學目標 1。知識與技能 (1)了解平面向量基本定理及其意義; (2)理解平面內(nèi)三點共線的充要條件及線段中點的向量表達式。 2。過程與方法 通過平面向量基本定理得出的過程,體會由特殊到一般的方法,培養(yǎng)學生“數(shù)”與“形”相互轉(zhuǎn)化的思想方法。 3。情感態(tài)度與價值觀 通過本節(jié)課的教學,培養(yǎng)學生嚴肅認真的科學態(tài)度與積極探索的良好學習品質(zhì). 二、教學重點與難點 重點:平面向量基本定理的應用; 難點:平面向量在給定基向量上分解的唯一性. 三、教學過程 (一)、相關知識: 1、向量的加法

2、、減法: 2、數(shù)乘向量: (二)、問題引入: 如圖,設e1、e2是同一平面內(nèi)兩個不共線的向量,試用e1、e2表示向量,,,.(詳見課本P96圖2-34) 平面向量基本定理: 如果,是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量,有且只有一對實數(shù)λ1,λ2使=λ1+λ2 我們把不共線向量,叫做表示這一平面內(nèi)所有向量的一組基底; 學案使課堂從“教”為中心轉(zhuǎn)到“學”為中心 (三)、探究體驗: 1、 選擇基底向量 (1) 如圖1,在中,N是 的邊上的點,并且BN:BA=3:5, 若要表示向量,可以 使用哪兩個向量做基底

3、? 反思1:基底向量是否唯一? (圖1) 反思2:向量被分解后,表示是否唯一?(唯一性) 2、 用已選基底向量表示未知向量 (2)如圖2,在上個問題中,若以為基底向量,則: , , + 反思3:把未知向量分解轉(zhuǎn)化為基底向量表示的方法是什么? (圖2) (四)、典型例題: 例1、已知平行四邊形ABCD的兩條對角線相交于M,設,,試用基底{}表示 ,,,(課本P97例1) 學案使學生從“聽眾”角色轉(zhuǎn)變?yōu)椤把輪T”角色

4、 例2、已知是l上任意兩點,O是l外一點如圖,求證:對直線l上任一點P,存在實數(shù)t,使關于基底{}的分解式為 (五)、隨堂檢測: 1. 已知向量不共線,實數(shù)x、y滿足,則x-y的值等于( A ) A.3 B.-3 C.0 D.2 2. 已知分別是的邊上的中線,且,則為 ( B ) A. B. C. D. 3、(2008年廣東卷8)在平行四邊形中,與交于點是線段的中點,的延長線與交于點.若,,則( B ) A. B

5、. C. D. 4、(2007年北京4)已知是所在平面內(nèi)一點,為邊中點,且,那么( A?。? A. B. C. D. 導讀、 導聽、 導思、 導做 5、(2007年全國Ⅱ5)在中,已知是邊上一點,若,則( A ) A. B. C. D. 6、(2006年廣東卷)已知D是△ABC的邊AB上的中點,則向量( C ) 7、(2006年安徽卷)在中,,M 為 BC 的 中 點 ,則 。(用表示) 總結(jié): 運用平面向量基本定理解決相關的問題時,可分為三個步驟: (1)選擇基底——選擇合適的基底向量 (2)轉(zhuǎn)換向量——將未知向量轉(zhuǎn)換為基底向量表示 (3)運用解題——運用相關知識解決問題 自學、 自問、 自做、 自練 希望對大家有所幫助,多謝您的瀏覽!

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!