2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題六 解析幾何 2.6.2 圓錐曲線的方程與性質(zhì)學(xué)案 理.doc
-
資源ID:3895661
資源大?。?span id="24d9guoke414" class="font-tahoma">91.50KB
全文頁數(shù):3頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載

會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。
|
2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題六 解析幾何 2.6.2 圓錐曲線的方程與性質(zhì)學(xué)案 理.doc
2.6.2 圓錐曲線的方程與性質(zhì)
1.(2018浙江卷)雙曲線-y2=1的焦點(diǎn)坐標(biāo)是( )
A.(-,0),(,0) B.(-2,0),(2,0)
C.(0,-),(0,) D.(0,-2),(0,2)
[解析] ∵a2=3,b2=1,∴c==2.又∵焦點(diǎn)在x軸上,∴雙曲線的焦點(diǎn)坐標(biāo)為(-2,0),(2,0).
[答案] B
2.(2018天津卷)已知雙曲線-=1(a>0,b>0)的離心率為2,過右焦點(diǎn)且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn).設(shè)A,B到雙曲線的同一條漸近線的距離分別為d1和d2,且d1+d2=6,則雙曲線的方程為( )
A.-=1 B.-=1
C.-=1 D.-=1
[解析] ∵雙曲線-=1(a>0,b>0)的離心率為2,∴e2=1+=4,∴=3,即b2=3a2,∴c2=a2+b2=4a2,
由題意可設(shè)A(2a,3a),B(2a,-3a),
∵=3,∴漸近線方程為y=x,
則點(diǎn)A與點(diǎn)B到直線x-y=0的距離分別為d1==a,d2==a,又∵d1+d2=6,∴a+a=6,解得a=,∴b2=9,∴雙曲線的方程為-=1,故選C.
[答案] C
3.(2018全國(guó)卷Ⅱ)已知F1,F(xiàn)2是橢圓C:+=1(a>b>0)的左、右焦點(diǎn),A是C的左頂點(diǎn),點(diǎn)P在過A且斜率為的直線上,△PF1F2為等腰三角形,∠F1F2P=120,則C的離心率為( )
A. B. C. D.
[解析] 由題意易知直線AP的方程為y=(x+a),①
直線PF2的方程為y=(x-c).②
聯(lián)立①②得y=(a+c),
如圖,過P向x軸引垂線,垂足為H,則|PH|=(a+c).
因?yàn)椤螾F2H=60,|PF2|=|F1F2|=2c,|PH|=(a+c),
所以sin60==
=,
即a+c=5c,即a=4c,
所以e==.故選D.
[答案] D
4.(2018江蘇卷)在平面直角坐標(biāo)系xOy中,若雙曲線-=1(a>0,b>0)的右焦點(diǎn)F(c,0)到一條漸近線的距離為c,則其離心率的值是________.
[解析] 雙曲線的一條漸近線方程為bx-ay=0,則F(c,0)到這條漸近線的距離為=c,∴b=c,∴b2=c2,又b2=c2-a2,∴c2=4a2,∴e==2.
[答案] 2
5.(2018北京卷)已知橢圓M:+=1(a>b>0),雙曲線N:-=1.若雙曲線N的兩條漸近線與橢圓M的四個(gè)交點(diǎn)及橢圓M的兩個(gè)焦點(diǎn)恰為一個(gè)正六邊形的頂點(diǎn),則橢圓M的離心率為________;雙曲線N的離心率為________.
[解析] 解法一:如圖是一個(gè)正六邊形,A,B,C,D是雙曲線N的兩條漸近線與橢圓M的四個(gè)交點(diǎn),F(xiàn)1,F(xiàn)2為橢圓M的兩個(gè)焦點(diǎn).
∵直線AC是雙曲線N的一條漸近線,且其方程為y=x,
∴=.設(shè)m=k,則n=k,則雙曲線N的離心率e2==2.
連接F1C,在正六邊形ABF2CDF1中,可得∠F1CF2=90,∠CF1F2=30.
設(shè)橢圓的焦距為2c,則|CF2|=c,|CF1|=c,再由橢圓的定義得|CF1|+|CF2|=2a,即(+1)c=2a,∴橢圓M的離心率e1====-1.
解法二:雙曲線N的離心率同解法一.由題意可得C點(diǎn)坐標(biāo)為,代入橢圓M的方程,并結(jié)合a,b,c的關(guān)系,聯(lián)立得方程組
解得=-1.
[答案]?。? 2
圓錐曲線的定義、方程與性質(zhì)是每年高考必考的內(nèi)容.以選擇、填空題的形式考查,常出現(xiàn)在第4~11或15~16題的位置,著重考查圓錐曲線的幾何性質(zhì)與標(biāo)準(zhǔn)方程,難度中等.