2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題六 解析幾何 2.6.3 直線與圓錐曲線的位置關(guān)系學(xué)案 理.doc
-
資源ID:3901632
資源大?。?span id="24d9guoke414" class="font-tahoma">49.50KB
全文頁數(shù):3頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載

會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題六 解析幾何 2.6.3 直線與圓錐曲線的位置關(guān)系學(xué)案 理.doc
2.6.3 直線與圓錐曲線的位置關(guān)系
1.(2018全國卷Ⅰ)設(shè)拋物線C:y2=4x的焦點(diǎn)為F,過點(diǎn)(-2,0)且斜率為的直線與C交于M,N兩點(diǎn),則=( )
A.5 B.6 C.7 D.8
[解析] 設(shè)M(x1,y1),N(x2,y2).由已知可得直線的方程為y=(x+2),即x=y(tǒng)-2,由得y2-6y+8=0.
由根與系數(shù)的關(guān)系可得y1+y2=6,y1y2=8,
∴x1+x2=(y1+y2)-4=5,x1x2==4,∵F(1,0),∴=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y2=4-5+1+8=8,故選D.
[答案] D
2.(2017全國卷Ⅰ)已知F為拋物線C:y2=4x的焦點(diǎn),過F作兩條互相垂直的直線l1,l2,直線l1與C交于A,B兩點(diǎn),直線l2與C交于D,E兩點(diǎn),則|AB|+|DE|的最小值為( )
A.16 B.14 C.12 D.10
[解析] 由題意可知,點(diǎn)F的坐標(biāo)為(1,0),直線AB的斜率存在且不為0,故設(shè)直線AB的方程為x=my+1.
由得y2-4my-4=0,
設(shè)A(x1,y1),B(x2,y2),
則y1+y2=4m,y1y2=-4,
∴x1+x2=m(y1+y2)+2=4m2+2,
∴|AB|=|AF|+|BF|=x1+x2+2=4m2+4.
∵AB⊥DE,∴直線DE的方程為x=-y+1,|DE|=+4,
∴|AB|+|DE|=4m2+4++4
=4+8≥42+8=16,
當(dāng)且僅當(dāng)m2=,即m=1時,等號成立.
∴|AB|+|DE|的最小值為16.故選A.
[答案] A
3.(2018全國卷Ⅲ)已知點(diǎn)M(-1,1)和拋物線C:y2=4x,過C的焦點(diǎn)且斜率為k的直線與C交于A,B兩點(diǎn).若∠AMB=90,是k=________.
[解析] 由題意可知C的焦點(diǎn)坐標(biāo)為(1,0),所以過焦點(diǎn)(1,0),斜率為k的直線方程為x=+1,設(shè)A,B,將直線方程與拋物線方程聯(lián)立得整理得y2-y-4=0,從而得y1+y2=,y1y2=-4.
∵M(jìn)(-1,1),∠AMB=90,∴=0,
即+(y1-1)(y2-1)=0,即k2-4k+4=0,解得k=2.
[答案] 2
4.(2018全國卷Ⅱ)設(shè)拋物線C:y2=4x的焦點(diǎn)為F,過F且斜率為k(k>0)的直線l與C交于A,B兩點(diǎn),|AB|=8.
(1)求l的方程;
(2)求過點(diǎn)A,B且與C的準(zhǔn)線相切的圓的方程.
[解] (1)由題意得F(1,0),l的方程為y=k(x-1)(k>0),
設(shè)A(x1,y1),B(x2,y2).
由得k2x2-(2k2+4)x+k2=0.
Δ=16k2+16>0,故x1+x2=.
所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.
由題設(shè)知=8,解得k=-1(舍去),或k=1,
因此l的方程為y=x-1.
(2)由(1)得AB的中點(diǎn)坐標(biāo)為(3,2),所以AB的垂直平分線方程為y-2=-(x-3),即y=-x+5.
設(shè)所求圓的圓心坐標(biāo)為(x0,y0),則
解得或
因此所求圓的方程為(x-3)2+(y-2)2=16
或(x-11)2+(y+6)2=144.
圓錐曲線的綜合問題多以解答題的形式考查,常作為壓軸題出現(xiàn)在第20題的位置,一般難度較大.直線與圓錐曲線的位置關(guān)系、軌跡方程、定點(diǎn)、定值、最值、范圍以及存在性問題都是考查的重點(diǎn),常與向量、函數(shù)、不等式等知識結(jié)合.解題時,常以直線與圓錐曲線的位置關(guān)系為突破口,利用設(shè)而不求、整體代換的技巧求解,要注重?cái)?shù)形結(jié)合思想、函數(shù)與方程思想、分類討論思想以及轉(zhuǎn)化與化歸思想在解題中的指導(dǎo)作用.