《人教版 小學(xué)8年級(jí) 數(shù)學(xué)上冊(cè) 12.3.2等邊三角形2》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教版 小學(xué)8年級(jí) 數(shù)學(xué)上冊(cè) 12.3.2等邊三角形2(4頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2019人教版初中數(shù)學(xué)精品教學(xué)資料
年級(jí)
八年級(jí)
課題
12.3.2等邊三角形(2)
課型
新授
教 學(xué) 媒 體
多 媒 體
教
學(xué)
目
標(biāo)
知識(shí)技 能
1. 掌握含30°角的直角三角形的邊角性質(zhì).
2. 了解直角三角形邊角性質(zhì)定理的逆定理.
3. 會(huì)用上面性質(zhì)證明簡(jiǎn)單的線段倍分問題.
過程方 法
通過探究30°角直角三角形的性質(zhì),增強(qiáng)學(xué)生對(duì)特殊直角三角形的認(rèn)識(shí),培養(yǎng)分析問題、解決問題的能力.
情感態(tài) 度
通過學(xué)習(xí)30°角直角三角形的性質(zhì),了解等邊三角形與30°角直角三角形相互轉(zhuǎn)化的事實(shí),培養(yǎng)
2、學(xué)生用發(fā)展變化的思想看問題的價(jià)值觀.
教學(xué)重點(diǎn)
含30°角的直角三角形的性質(zhì).
教學(xué)難點(diǎn)
含30°角的直角三角形性質(zhì)的推導(dǎo).
教 學(xué) 過 程 設(shè) 計(jì)
教 學(xué) 程 序 及 教 學(xué) 內(nèi) 容
師生行為
設(shè)計(jì)意圖
一、情境引入
我們見過那些特殊形狀的三角形(即三角形每個(gè)內(nèi)角度數(shù)不變)?
二、探究新知
探究:
1.將兩個(gè)含30°角的三角尺按如圖所示擺放在一起,觀察并回答下面的問題:
(1)判斷△ABD的形狀,依據(jù)是 什么?
(2) BC與CD大小有什么關(guān)系關(guān)系?為什么?
(3)BC與AB大小有什么關(guān)系?為什么
3、?你能歸納含30°角的直角三角形性質(zhì)嗎?
歸納:
含30°角的直角三角形的邊角性質(zhì):
在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半。
事實(shí)上,上述定理的逆命題也是真命題:
在直角三角形中,如果一條直角邊等于斜邊的一半,那么它對(duì)的角等于30°。
含30°角的直角三角形是半個(gè)等邊三角形,除了具有上述邊角的特殊關(guān)系外,它的三個(gè)角度數(shù)分別為30°、60°、90°所以它是一個(gè)特殊的直角三角形.
【例題】如圖,在中,∠BAC=120°,AB=AC,
AD⊥A
4、C交BC于D,求證:BC=3AD.
【解析】∵∠BAC=120°,AB=AC,
可知∠B=∠C =30°,
∵AD⊥AC,
∴∠BAD=30°,∴BD=AD,
在Rt中,∠C =30°,∴CD=2AD,
∴BC=3AD.
【點(diǎn)撥】頂角為120°的等腰三角形,頂角是底角的4倍,因含有30°角,易于出現(xiàn)線段倍分問題,除本題外,還有如“底邊上的高等于腰長的一半”等特殊性。所以它是較為特殊的三角形,可將等腰三角形與直角三角形巧妙結(jié)合,被考查的概率很大。
三、課堂訓(xùn)練
1.三角形三個(gè)內(nèi)角的度數(shù)之比為1∶2∶3,它的最短邊長4c
5、m,則它的最長邊為______cm.
2.等腰三角形的頂角為120°,腰長為6,則底邊上的高線長為_______.
3.等腰三角形的頂角為150°,腰長為6,則其面積為_______.
4.一個(gè)三角形的兩個(gè)內(nèi)角分別為30°、75°,最長邊為8cm,則這個(gè)三角形的面積為______.
5.在Rt中,∠C=90°,∠B=15°,AC=10,AB的垂直平分線交BC于D,則DB=_______.
6.如圖,在中,BD是AC邊上的中線,DB⊥BC于B,且∠ABC=120°,求證:AB=2BC.
6、7.如圖,中,∠ACB=90°,∠A=30°,CD是斜邊上的高,CE是中線,若AB=8,求DE長.
拓展思維:
如圖所示,一艘輪船以15海里/時(shí)的速度由南向北航行,在A處測(cè)得小島P在北偏西15°方向上,兩小時(shí)后,輪船在B處測(cè)得小島P在北偏西30°方向上,已知在小島周圍18海里內(nèi)有暗礁,若輪船繼續(xù)向前航行有無觸礁的危險(xiǎn)?
四、小結(jié)歸納
學(xué)生本節(jié)課的主要收獲
1. 掌握含30°角的直角三角形的邊角性質(zhì).
2. 會(huì)用上面性質(zhì)證明簡(jiǎn)單的線段倍分問題.
五、作業(yè)設(shè)計(jì)
一、教材第56頁練習(xí)題。
二、教材第64頁
7、習(xí)題第7題。
三、教材第58頁習(xí)題第14題選做。
四、補(bǔ)充作業(yè):
如圖,∠AOB=30°,OC平分∠AOB,P為OC上的一點(diǎn),PD∥OA交OB于D,PE⊥OA于E , 若OD= 4 ㎝ ,求PE的長。
學(xué)生列舉特殊形狀的三角形,老師引出本節(jié)課的課題,并板書課題。
學(xué)生觀察、思考、猜測(cè)、證明、歸納結(jié)論。
教師給出含30°角的直角三角形性質(zhì)的準(zhǔn)確描述,并板書性質(zhì)。
學(xué)生獨(dú)立思考思考,再相互交流。
教師引導(dǎo)學(xué)生計(jì)算圖中角的度數(shù),把角的關(guān)系
8、轉(zhuǎn)化為邊的關(guān)系。
第1、2題學(xué)生自己畫圖,自己解決問題。
第3、4、5題教師引導(dǎo)學(xué)生畫圖,計(jì)算圖中角的度數(shù),把角的關(guān)系轉(zhuǎn)化為邊的關(guān)系。
教師引導(dǎo)學(xué)生作輔助線:延長BD到E,使BD=DE(中線倍長法),創(chuàng)造全等三角形。
學(xué)生畫圖,給予證明。
學(xué)生先獨(dú)立思考,再相互交流。
教師引導(dǎo)學(xué)生計(jì)算圖中角的度數(shù),把角的關(guān)系轉(zhuǎn)化為邊的關(guān)系。
教師引導(dǎo)學(xué)生作出輔助線:過點(diǎn)P作直線AB的垂線段。
學(xué)生畫圖,計(jì)算。
教師引導(dǎo)學(xué)生回顧本節(jié)課知識(shí),并總結(jié)、歸納本節(jié)課的重點(diǎn)。
對(duì)以前
9、所學(xué)的特殊形狀的三角形進(jìn)行歸納,增強(qiáng)學(xué)生對(duì)特殊直角三角形的認(rèn)識(shí)。
學(xué)生通過觀察、思考、猜測(cè)、證明、歸納,培養(yǎng)學(xué)生的語言表達(dá)能力、觀察能力、歸納能力、養(yǎng)成良好的自覺探索幾何命題的習(xí)慣。
考察學(xué)生隊(duì)30°角的直角三角形性質(zhì)的掌握,學(xué)生體會(huì)特殊形狀的三角形通過角的關(guān)系可以轉(zhuǎn)化為邊的關(guān)系,同樣通過邊的關(guān)系也可以轉(zhuǎn)化為角的關(guān)系。
考察學(xué)生對(duì)30°角的直角三角形性質(zhì)的掌握,培養(yǎng)學(xué)生動(dòng)手畫圖能力、分析問題、解決問題的能力。
讓學(xué)生知道“中線倍長法”是構(gòu)造全等三角形常見的輔助線,他能
10、把分散的條件集中在同一個(gè)三角形中去解決問題。
考察學(xué)生對(duì)30°角的直角三角形性質(zhì)的掌握,培養(yǎng)分析問題、解決問題的能力。
,
考察學(xué)生對(duì)30°角的直角三角形性質(zhì)的掌握,學(xué)生通過畫圖、計(jì)算、培養(yǎng)學(xué)生培養(yǎng)學(xué)生動(dòng)手能力、畫圖能力、分析問題、解決問題的能力。
板 書 設(shè) 計(jì)
一、30°角的直角三角形的邊角性質(zhì). 二、例題解析.
三、課堂訓(xùn)練6 .
拓展思維解析
教學(xué)反思