《高三理科數(shù)學(xué) 一輪總復(fù)習(xí)第十六章 幾何證明選講教師用書(shū)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高三理科數(shù)學(xué) 一輪總復(fù)習(xí)第十六章 幾何證明選講教師用書(shū)(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第十六章 幾何證明選講
高考導(dǎo)航
考試要求
重難點(diǎn)擊
命題展望
1.了解平行線(xiàn)截割定理.
2.會(huì)證明并應(yīng)用直角三角形射影定理.
3.會(huì)證明并應(yīng)用圓周角定理,圓的切線(xiàn)的判定定理及性質(zhì)定理,并會(huì)運(yùn)用它們進(jìn)行計(jì)算與證明.
4.會(huì)證明并應(yīng)用相交弦定理、圓內(nèi)接四邊形的性質(zhì)定理與判定定理、切割線(xiàn)定理,并會(huì)運(yùn)用它們進(jìn)行幾何計(jì)算與證明.
5.了解平行投影的含義,通過(guò)圓柱與平面的位置關(guān)系了解平行投影;會(huì)證明平面與圓柱面的截線(xiàn)是橢圓(特殊情形是圓).
6.了解下面的定理.
定理:在空間中,取直線(xiàn)l為軸,直線(xiàn)l′與l相交于點(diǎn)O,其夾角為α,l′圍繞l旋轉(zhuǎn)得到以O(shè)為頂點(diǎn),l
2、′為母線(xiàn)的圓錐面,任取平面π,若它與軸l的交角為β(π與l平行,記β=0),則:
①β>α,平面π與圓錐的交線(xiàn)為橢圓;
②β=α,平面π與圓錐的交線(xiàn)為拋物線(xiàn);
③β<α,平面π與圓錐的交線(xiàn)為雙曲線(xiàn).
7.會(huì)利用丹迪林(Dandelin)雙球(如圖所示,這兩個(gè)球位于圓錐的內(nèi)部,一個(gè)位于平面π的上方,一個(gè)位于平面π的下方,并且與平面π及圓錐面均相切,其切點(diǎn)分別為F,E)證明上述定理①的情形:
當(dāng)β>α?xí)r,平面π與圓錐的交線(xiàn)為橢圓.
(圖中,上、下兩球與圓錐面相切的切點(diǎn)分別為點(diǎn)B和點(diǎn)C,線(xiàn)段BC與平面π相交于點(diǎn)A)
8.會(huì)證明以下結(jié)果:
①在7.中,一個(gè)丹迪林球與圓錐面的交線(xiàn)為一個(gè)圓
3、,并與圓錐的底面平行.記這個(gè)圓所在的平面為π′.
②如果平面π與平面π′的交線(xiàn)為m,在6.①中橢圓上任取點(diǎn)A,該丹迪林球與平面π的切點(diǎn)為F,則點(diǎn)A到點(diǎn)F的距離與點(diǎn)A到直線(xiàn)m的距離比是小于1的常數(shù)e(稱(chēng)點(diǎn)F為這個(gè)橢圓的焦點(diǎn),直線(xiàn)m為橢圓的準(zhǔn)線(xiàn),常數(shù)e為離心率).
9.了解定理6.③中的證明,了解當(dāng)β無(wú)限接近α?xí)r,平面π的極限結(jié)果.
本章重點(diǎn):相似三角形的判定與性質(zhì),與圓有關(guān)的若干定理及其運(yùn)用,并將其運(yùn)用到立體幾何中.
本章難點(diǎn):對(duì)平面截圓柱、圓錐所得的曲線(xiàn)為圓、橢圓、雙曲線(xiàn)、拋物線(xiàn)的證明途徑與方法,它是解立體幾何、平面幾何知識(shí)的綜合運(yùn)用,應(yīng)較好地把握.
本專(zhuān)題強(qiáng)調(diào)利用演繹
4、推理證明結(jié)論,通過(guò)推理證明進(jìn)一步發(fā)展學(xué)生的邏輯推理能力,進(jìn)一步提高空間想象能力、幾何直觀(guān)能力和綜合運(yùn)用幾何方法解決問(wèn)題的能力.
第一講與第二講是傳統(tǒng)內(nèi)容,高考中主要考查平行線(xiàn)截割定理、直角三角形射影定理以及與圓有關(guān)的性質(zhì)和判定,考查邏輯推理能力.第三講內(nèi)容是新增內(nèi)容,在新課程高考下,要求很低,只作了解.
知識(shí)網(wǎng)絡(luò)
16.1 相似三角形的判定及有關(guān)性質(zhì)
典例精析
題型一 相似三角形的判定與性質(zhì)
【例1】 如圖,已知在△ABC中,D是BC邊的中點(diǎn),且AD=AC,DE⊥BC,DE與AB相交于點(diǎn)E,EC與AD相交于點(diǎn)F.
(1)求證:△ABC∽△FCD;
(2
5、)若S△FCD=5,BC=10,求DE的長(zhǎng).
【解析】(1)因?yàn)镈E⊥BC,D是BC的中點(diǎn),所以EB=EC,所以∠B=∠1.
又因?yàn)锳D=AC,所以∠2=∠ACB.所以△ABC∽△FCD.
(2)過(guò)點(diǎn)A作AM⊥BC,垂足為點(diǎn)M.因?yàn)椤鰽BC∽△FCD,BC=2CD,所以=()2=4,又因?yàn)镾△FCD=5,所以S△ABC=20.因?yàn)镾△ABC=BCAM,BC=10,所以20=10AM,所以AM=4.又因?yàn)镈E∥AM,所以=,因?yàn)镈M=DC=,BM=BD+DM,BD=BC=5,所以=,所以DE=.
【變式訓(xùn)練1】如右圖,在△ABC中,AB=14 cm,=,DE∥BC,CD⊥AB,CD=12
6、 cm.求△ADE的面積和周長(zhǎng).
【解析】由AB=14 cm,CD=12 cm,CD⊥AB,得S△ABC=84 cm2.
再由DE∥BC可得△ABC∽△ADE.由=()2可求得S△ADE= cm2.利用勾股定理求出BC,AC,再由相似三角形性質(zhì)可得△ADE的周長(zhǎng)為15 cm.
題型二 探求幾何結(jié)論
【例2】如圖,在梯形ABCD中,點(diǎn)E,F(xiàn)分別在AB,CD上,EF∥AD,假設(shè)EF做上下平行移動(dòng).
(1)若=,求證:3EF=BC+2AD;
(2)若=,試判斷EF與BC,AD之間的關(guān)系,并說(shuō)明理由;
(3)請(qǐng)你探究一般結(jié)論,即若=,那么你可以得到什么結(jié)論?
【解析】 過(guò)點(diǎn)A作A
7、H∥CD分別交EF,BC于點(diǎn)G、H.
(1)因?yàn)椋?,所以=?
又EG∥BH,所以==,即3EG=BH,
又EG+GF=EG+AD=EF,從而EF=(BC-HC)+AD,
所以EF=BC+AD,即3EF=BC+2AD.
(2)EF與BC,AD的關(guān)系式為5EF=2BC+3AD,理由和(1)類(lèi)似.
(3)因?yàn)椋?,所以=?
又EG∥BH,所以=,即EG=BH.
EF=EG+GF=EG+AD=(BC-AD)+AD,
所以EF=BC+AD,
即(m+n)EF=mBC+nAD.
【點(diǎn)撥】 在相似三角形中,平行輔助線(xiàn)是常作的輔助線(xiàn)之一;探求幾何結(jié)論可按特殊到一般的思路去獲取,但結(jié)論證
8、明應(yīng)從特殊情況得到啟迪.
【變式訓(xùn)練2】如右圖,正方形ABCD的邊長(zhǎng)為1,P是CD邊上中點(diǎn),點(diǎn)Q在線(xiàn)段BC上,設(shè)BQ=k,是否存在這樣的實(shí)數(shù)k,使得以Q,C,P為頂點(diǎn)的三角形與△ADP相似?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
【解析】設(shè)存在滿(mǎn)足條件的實(shí)數(shù)k,
則在正方形ABCD中,∠D=∠C=90,
由Rt△ADP∽R(shí)t△QCP或Rt△ADP∽R(shí)t△PCQ得=或=,
由此解得CQ=1或CQ=.
從而k=0或k=.
題型三 解決線(xiàn)的位置或數(shù)量關(guān)系
【例3】(2009江蘇)如圖,在四邊形ABCD中,△ABC△BAD,求證:AB∥CD.
【證明】 由△ABC≌△BAD得∠A
9、CB=∠BDA,所以A、B、C、D四點(diǎn)共圓,
所以∠CAB=∠CDB.
再由△ABC≌△BAD得∠CAB=∠DBA,
所以∠DBA=∠CDB,即AB∥CD.
【變式訓(xùn)練3】如圖,AA1與BB1相交于點(diǎn)O,AB∥A1B1且AB=A1B1,△AOB的外接圓的直徑為1,則△A1OB1的外接圓的直徑為 .
【解析】因?yàn)锳B∥A1B1且AB=A1B1,所以△AOB∽△A1OB1
因?yàn)閮扇切瓮饨訄A的直徑之比等于相似比.
所以△A1OB1的外接圓直徑為2.
總結(jié)提高
1.相似三角形的判定與性質(zhì)這一內(nèi)容是平面幾何知識(shí)的重要組成部分,是解題的工具,同時(shí)它的內(nèi)容滲透了等價(jià)轉(zhuǎn)化、從一般到特殊
10、、分類(lèi)討論等重要的數(shù)學(xué)思想與方法,在學(xué)習(xí)時(shí)應(yīng)以它們?yōu)橹笇?dǎo).相似三角形的證法有:定義法、平行法、判定定理法以及直角三角形的HL法.
相似三角形的性質(zhì)主要有對(duì)應(yīng)線(xiàn)的比值相等(邊長(zhǎng)、高線(xiàn)、中線(xiàn)、周長(zhǎng)、內(nèi)切圓半徑等),對(duì)應(yīng)角相等,面積的比等于相似比的平方.
2.“平行出相似”“平行成比例”,故此章中平行輔助線(xiàn)是常作的輔助線(xiàn)之一,遇到困難時(shí)應(yīng)??紤]此類(lèi)輔助線(xiàn).
16.2 直線(xiàn)與圓的位置關(guān)系和圓錐曲線(xiàn)的性質(zhì)
典例精析
題型一 切線(xiàn)的判定和性質(zhì)的運(yùn)用
【例1】如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線(xiàn)AD交⊙O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線(xiàn)于點(diǎn)E,OE交AD于點(diǎn)F.
11、
(1)求證:DE是⊙O的切線(xiàn);
(2)若=,求的值.
【解析】(1)證明:連接OD,可得∠ODA=∠OAD=∠DAC,
所以O(shè)D∥AE,又AE⊥DE,所以DE⊥OD,
又OD為半徑,所以DE是⊙O的切線(xiàn).
(2)過(guò)D作DH⊥AB于H,則有∠DOH=∠CAB,
=cos∠DOH=cos∠CAB==,
設(shè)OD=5x,則AB=10x,OH=2x,所以AH=7x.
由△AED≌△AHD可得AE=AH=7x,
又由△AEF∽△DOF可得AF∶DF=AE∶OD=,
所以=.
【變式訓(xùn)練1】已知在直角三角形ABC中,∠ACB=90,以BC為直徑的⊙O交AB于點(diǎn)D,連接DO并延長(zhǎng)交
12、AC的延長(zhǎng)線(xiàn)于點(diǎn)E,⊙O的切線(xiàn)DF交AC于點(diǎn)F.
(1)求證:AF=CF;
(2)若ED=4,sin∠E=,求CE的長(zhǎng).
【解析】(1)方法一:設(shè)線(xiàn)段FD延長(zhǎng)線(xiàn)上一點(diǎn)G,則∠GDB=∠ADF,且∠GDB+∠BDO=,所以∠ADF+∠BDO=,又因?yàn)樵凇袿中OD=OB,∠BDO=∠OBD,所以∠ADF+∠OBD=.
在Rt△ABC中,∠A+∠CBA=,所以∠A=∠ADF,所以AF=FD.
又在Rt△ABC中,直角邊BC為⊙O的直徑,所以AC為⊙O的切線(xiàn),
又FD為⊙O的切線(xiàn),所以FD=CF.
所以AF=CF.
方法二:在直角三角形ABC中,直角邊BC為⊙O的直徑,所以AC為⊙O
13、的切線(xiàn),
又FD為⊙O的切線(xiàn),所以FD=CF,且∠FDC=∠FCD.
又由BC為⊙O的直徑可知,∠ADF+∠FDC=,∠A+∠FCD=,
所以∠ADF=∠A,所以FD=AF.
所以AF=CF.
(2)因?yàn)樵谥苯侨切蜦ED中,ED=4,sin∠E=,所以cos∠E=,所以FE=5.
又FD=3=FC,所以CE=2.
題型二 圓中有關(guān)定理的綜合應(yīng)用
【例2】如圖所示,已知⊙O1與⊙O2相交于A、B兩點(diǎn),過(guò)點(diǎn)A作⊙O1的切線(xiàn)交⊙O2于點(diǎn)C,過(guò)點(diǎn)B作兩圓的割線(xiàn),分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.
(1)求證:AD∥EC;
(
14、2)若AD是⊙O2的切線(xiàn),且PA=6,PC=2,BD=9,求AD的長(zhǎng).
【解析】(1)連接AB,因?yàn)锳C是⊙O1的切線(xiàn),所以∠BAC=∠D,
又因?yàn)椤螧AC=∠E,所以∠D=∠E,所以AD∥EC.
(2)方法一:因?yàn)镻A是⊙O1的切線(xiàn),PD是⊙O1的割線(xiàn),
所以PA2=PBPD,所以62=PB(PB+9),所以PB=3.
在⊙O2中,由相交弦定理得PAPC=BPPE,所以PE=4.
因?yàn)锳D是⊙O2的切線(xiàn),DE是⊙O2的割線(xiàn),
所以AD2=DBDE=916,所以AD=12.
方法二:設(shè)BP=x,PE=y(tǒng).
因?yàn)镻A=6,PC=2,所以由相交弦定理得PAPC=BPPE,即xy=
15、12.①
因?yàn)锳D∥EC,所以=,所以=.②
由①②可得或 (舍去),所以DE=9+x+y=16.
因?yàn)锳D是⊙O2的切線(xiàn),DE是⊙O2的割線(xiàn),所以AD2=DBDE=916,所以AD=12.
【變式訓(xùn)練2】如圖,⊙O的直徑AB的延長(zhǎng)線(xiàn)與弦CD的延長(zhǎng)線(xiàn)相交于點(diǎn)P,E為⊙O上一點(diǎn),,DE交AB于點(diǎn)F,且AB=2BP=4.
(1)求PF的長(zhǎng)度;
(2)若圓F與圓O內(nèi)切,直線(xiàn)PT與圓F切于點(diǎn)T,求線(xiàn)段PT的長(zhǎng)度.
【解析】(1)連接OC,OD,OE,由同弧對(duì)應(yīng)的圓周角與圓心角之間的關(guān)系,結(jié)合題中已知條件可得∠CDE=∠AOC.
又∠CDE=∠P+∠PFD,∠AOC=∠P+∠OCP,
16、從而∠PFD=∠OCP,故△PFD∽△PCO,所以=.
由割線(xiàn)定理知PCPD=PAPB=12,故PF===3.
(2)若圓F與圓O內(nèi)切,設(shè)圓F的半徑為r,
因?yàn)镺F=2-r=1,即r=1,
所以O(shè)B是圓F的直徑,且過(guò)點(diǎn)P的圓F的切線(xiàn)為PT,
則PT2=PBPO=24=8,即PT=2.
題型三 四點(diǎn)共圓問(wèn)題
【例3】如圖,圓O與圓P相交于A、B兩點(diǎn),圓心P在圓O上,圓O的弦BC切圓P于點(diǎn)B,CP及其延長(zhǎng)線(xiàn)交圓P于D,E兩點(diǎn),過(guò)點(diǎn)E作EF⊥CE,交CB的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:B、P、E、F四點(diǎn)共圓;
(2)若CD=2,CB=2,求出由B、P、E、F四點(diǎn)所確定的圓的直徑.
17、【解析】(1)證明:連接PB.因?yàn)锽C切圓P于點(diǎn)B,所以PB⊥BC.
又因?yàn)镋F⊥CE,所以∠PBF+∠PEF=180,所以∠EPB+∠EFB=180,
所以B,P,E,F(xiàn)四點(diǎn)共圓.
(2)因?yàn)锽,P,E,F(xiàn)四點(diǎn)共圓,且EF⊥CE,PB⊥BC,所以此圓的直徑就是PF.
因?yàn)锽C切圓P于點(diǎn)B,且CD=2,CB=2,
所以由切割線(xiàn)定理CB2=CDCE,得CE=4,DE=2,BP=1.
又因?yàn)镽t△CBP∽R(shí)t△CEF,所以EF∶PB=CE∶CB,得EF=.
在Rt△FEP中,PF==,
即由B,P,E,F(xiàn)四點(diǎn)確定的圓的直徑為.
【變式訓(xùn)練3】如圖,△ABC是直角三角形,∠ABC
18、=90.以AB為直徑的圓O交AC于點(diǎn)E,點(diǎn)D是BC邊的中點(diǎn).連接OD交圓O于點(diǎn)M.求證:
(1)O,B,D,E四點(diǎn)共圓;
(2)2DE2=DMAC+DMAB.
【證明】(1)連接BE,則BE⊥EC.
又D是BC的中點(diǎn),所以DE=BD.
又OE=OB,OD=OD,所以△ODE≌△ODB,
所以∠OBD=∠OED=90,所以D,E,O,B四點(diǎn)共圓.
(2)延長(zhǎng)DO交圓O于點(diǎn)H.
因?yàn)镈E2=DMDH=DM(DO+OH)=DMDO+DMOH=DM(AC)+DM(AB),
所以2DE2=DMAC+DMAB.
總結(jié)提高
1.直線(xiàn)與圓的位置關(guān)系是一種重要的幾何關(guān)系.
本章在初中平面幾何的基礎(chǔ)上加以深化,使平面幾何知識(shí)趨于完善,同時(shí)為解析幾何、立體幾何提供了多個(gè)理論依據(jù).
2.圓中的角如圓周角、圓心角、弦切角及其性質(zhì)為證明相關(guān)的比例線(xiàn)段提供了理論基礎(chǔ),為解決綜合問(wèn)題提供了方便,使學(xué)生對(duì)幾何概念和幾何方法有較透徹的理解.