九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

高考數(shù)學(xué)浙江理科一輪【第二章】函數(shù)與基本初等函數(shù)I【下】 第8講 函數(shù)與方程

  • 資源ID:43051414       資源大?。?span id="24d9guoke414" class="font-tahoma">136KB        全文頁數(shù):7頁
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗(yàn)證碼:   換一換

 
賬號:
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

高考數(shù)學(xué)浙江理科一輪【第二章】函數(shù)與基本初等函數(shù)I【下】 第8講 函數(shù)與方程

精品資料 第8講 函數(shù)與方程 一、選擇題 1.“a<-2”是“函數(shù)f(x)=ax+3在區(qū)間[-1,2]上存在零點(diǎn)x0”的(  ) A.充分不必要條件      B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件 解析 當(dāng)a<-2時,函數(shù)f(x)=ax+3在區(qū)間[-1,2]上單調(diào)遞減,此時f(-1)=3-a>0,f(2)=3+2a<0,所以函數(shù)f(x)=ax+3在區(qū)間[-1,2]上存在零點(diǎn)x0;當(dāng)函數(shù)f(x)=ax+3在區(qū)間[-1,2]上存在零點(diǎn)x0時, 有f(-1)f(2)<0,即2a2-3a-9>0, 解得a>3或a<-. 答案 A 2.下列函數(shù)圖像與x軸均有公共點(diǎn),其中能用二分法求零點(diǎn)的是(  ) 解析 能用二分法求零點(diǎn)的函數(shù)必須在含零點(diǎn)的區(qū)間(a,b)內(nèi)連續(xù),并且有f(a)f(b)<0.A、B、D中函數(shù)不符合. 答案 C 3.函數(shù)f(x)=2x--a的一個零點(diǎn)在區(qū)間(1,2)內(nèi),則實(shí)數(shù)a的取值范圍是 (  ). A.(1,3) B.(1,2) C.(0,3) D.(0,2) 解析 由條件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a-3)<0,解之得0<a<3. 答案 C 4.已知f(x)是R上最小正周期為2的周期函數(shù),且當(dāng)0≤x<2時,f(x)=x3-x,則函數(shù)y=f(x)的圖象在區(qū)間[0,6]上與x軸的交點(diǎn)的個數(shù)為 (  ). A.6 B.7 C.8 D.9 解析 當(dāng)0≤x<2時,令f(x)=x3-x=0,得x=0或x=1. 根據(jù)周期函數(shù)的性質(zhì),由f(x)的最小正周期為2,可知y=f(x)在[0,6)上有6個零點(diǎn), 又f(6)=f(32)=f(0)=0, ∴f(x)在[0,6]上與x軸的交點(diǎn)個數(shù)為7. 答案 B 5.函數(shù)f(x)=-cos x在[0,+∞)內(nèi) (  ). A.沒有零點(diǎn) B.有且僅有一個零點(diǎn) C.有且僅有兩個零點(diǎn) D.有無窮多個零點(diǎn) 解析 令f(x)=0,得=cos x,在同一坐標(biāo)系內(nèi)畫出兩個函數(shù)y=與y=cos x的圖象如圖所示,由圖象知,兩個函數(shù)只有一個交點(diǎn),從而方程=cos x只有一個解. ∴函數(shù)f(x)只有一個零點(diǎn). 答案 B 6.已知函數(shù)f(x)=xex-ax-1,則關(guān)于f(x)零點(diǎn)敘述正確的是(  ). A.當(dāng)a=0時,函數(shù)f(x)有兩個零點(diǎn) B.函數(shù)f(x)必有一個零點(diǎn)是正數(shù) C.當(dāng)a<0時,函數(shù)f(x)有兩個零點(diǎn) D.當(dāng)a>0時,函數(shù)f(x)只有一個零點(diǎn) 解析 f(x)=0?ex=a+ 在同一坐標(biāo)系中作出y=ex與y=的圖象, 可觀察出A、C、D選項錯誤,選項B正確. 答案 B 二、填空題 7.用二分法研究函數(shù)f(x)=x3+3x-1的零點(diǎn)時,第一次經(jīng)計算f(0)<0,f(0.5)>0可得其中一個零點(diǎn)x0∈______,第二次應(yīng)計算________. 解析 ∵f(x)=x3+3x-1是R上的連續(xù)函數(shù),且f(0)<0,f(0.5)>0,則f(x)在x∈(0,0.5)上存在零點(diǎn),且第二次驗(yàn)證時需驗(yàn)證f(0.25)的符號. 答案 (0,0.5) f(0.25) 8.函數(shù)f(x)=則函數(shù)y=f[f(x)]+1的所有零點(diǎn)所構(gòu)成的集合為________. 解析 本題即求方程f[f(x)]=-1的所有根的集合,先解方程f(t)=-1,即或得t=-2或t=.再解方程f(x)=-2和f(x)=. 即或和或 得x=-3或x=和x=-或x=. 答案  9.已知函數(shù)f(x)=ex-2x+a有零點(diǎn),則a的取值范圍是________. 解析 由原函數(shù)有零點(diǎn),可將問題轉(zhuǎn)化為方程ex-2x+a=0有解問題,即方程a=2x-ex有解.令函數(shù)g(x)=2x-ex,則g′(x)=2-ex,令g′(x)=0,得x=ln 2,所以g(x)在(-∞,ln 2)上是增函數(shù),在(ln 2,+∞)上是減函數(shù),所以g(x)的最大值為:g(ln 2)=2ln 2-2.因此,a的取值范圍就是函數(shù)g(x)的值域,所以,a∈(-∞,2ln 2-2]. 答案 (-∞,2ln 2-2] 10.若直角坐標(biāo)平面內(nèi)兩點(diǎn)P,Q滿足條件:①P、Q都在函數(shù)f(x)的圖象上;②P、Q關(guān)于原點(diǎn)對稱,則稱點(diǎn)對(P、Q)是函數(shù)f(x)的一個“友好點(diǎn)對”(點(diǎn)對(P、Q)與點(diǎn)對(Q,P)看作同一個“友好點(diǎn)對”).已知函數(shù)f(x)=則f(x)的“友好點(diǎn)對”的個數(shù)是________. 解析 設(shè)P(x,y)、Q(-x,-y)(x>0)為函數(shù)f(x)的“友好點(diǎn)對”,則y=,-y=2(-x)2+4(-x)+1=2x2-4x+1,∴+2x2-4x+1=0,在同一坐標(biāo)系中作函數(shù)y1=、y2=-2x2+4x-1的圖象,y1、y2的圖象有兩個交點(diǎn),所以f(x)有2個“友好點(diǎn)對”,故填2. 答案 2 三、解答題 11.設(shè)函數(shù)f(x)=(x>0). (1)作出函數(shù)f(x)的圖象; (2)當(dāng)0<a<b,且f(a)=f(b)時,求+的值; (3)若方程f(x)=m有兩個不相等的正根,求m的取值范圍. 解 (1)如圖所示. (2)∵f(x)= = 故f(x)在(0,1]上是減函數(shù),而在(1,+∞)上是增函數(shù), 由0<a<b且f(a)=f(b), 得0<a<1<b,且-1=1-,∴+=2. (3)由函數(shù)f(x)的圖象可知,當(dāng)0<m<1時,方程f(x)=m有兩個不相等的正根. 12.已知函數(shù)f(x)=4x+m2x+1有且僅有一個零點(diǎn),求m的取值范圍,并求出該零點(diǎn). 思路分析 由題意可知,方程4x+m2x+1=0僅有一個實(shí)根,再利用換元法求解. 解析 ∵f(x)=4x+m2x+1有且僅有一個零點(diǎn), 即方程(2x)2+m2x+1=0僅有一個實(shí)根. 設(shè)2x=t(t>0),則t2+mt+1=0. 當(dāng)Δ=0時,即m2-4=0, ∴m=-2時,t=1;m=2時,t=-1(不合題意,舍去), ∴2x=1,x=0符合題意. 當(dāng)Δ>0時,即m>2或m<-2時, t2+mt+1=0有兩正或兩負(fù)根, 即f(x)有兩個零點(diǎn)或沒有零點(diǎn). ∴這種情況不符合題意. 綜上可知:m=-2時,f(x)有唯一零點(diǎn),該零點(diǎn)為x=0. 13.已知二次函數(shù)f(x)=x2-16x+q+3. (1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍; (2)是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時,f(x)的值域?yàn)閰^(qū)間D,且區(qū)間D的長度為12-t(視區(qū)間[a,b]的長度為b-a). 解 (1)∵函數(shù)f(x)=x2-16x+q+3的對稱軸是x=8,∴f(x)在區(qū)間[-1,1]上是減函數(shù). ∵函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),則必有即∴-20≤q≤12. (2)∵0≤t<10,f(x)在區(qū)間[0,8]上是減函數(shù),在區(qū)間[8,10]上是增函數(shù),且對稱軸是x=8. ①當(dāng)0≤t≤6時,在區(qū)間[t,10]上,f(t)最大,f(8)最小, ∴f(t)-f(8)=12-t,即t2-15t+52=0, 解得t=,∴t=; ②當(dāng)6<t≤8時,在區(qū)間[t,10]上,f(10)最大,f(8)最小, ∴f(10)-f(8)=12-t,解得t=8; ③當(dāng)8<t<10時,在區(qū)間[t,10]上,f(10)最大,f(t)最小, ∴f(10)-f(t)=12-t,即t2-17t+72=0,解得t=8,9, ∴t=9. 綜上可知,存在常數(shù)t=,8,9滿足條件. 14.已知函數(shù)f(x)=-x2+2ex+m-1,g(x)=x+(x>0). (1)若g(x)=m有零點(diǎn),求m的取值范圍; (2)確定m的取值范圍,使得g(x)-f(x)=0有兩個相異實(shí)根. 解 (1)法一:∵g(x)=x+≥2=2e, 等號成立的條件是x=e, 故g(x)的值域是[2e,+∞), 因而只需m≥2e,則g(x)=m就有零點(diǎn). 法二:作出g(x)=x+(x>0)的大致圖象如圖: 可知若使g(x)=m有零點(diǎn), 則只需m≥2e. 法三:由g(x)=m得 x2-mx+e2=0. 此方程有大于零的根, 故等價于, 故m≥2e. (2)若g(x)-f(x)=0有兩個相異的實(shí)根,即g(x)與f(x) 的圖象有兩個不同的交點(diǎn),作出g(x)=x+(x>0)的大致圖象. ∵f(x)=-x2+2ex+m-1 =-(x-e)2+m-1+e2. 其圖象的對稱軸為x=e,開口向下,最大值為m-1+e2. 故當(dāng)m-1+e2>2e, 即m>-e2+2e+1時, g(x)與f(x)有兩個交點(diǎn), 即g(x)-f(x)=0有兩個相異實(shí)根. ∴m的取值范圍是(-e2+2e+1,+∞)

注意事項

本文(高考數(shù)學(xué)浙江理科一輪【第二章】函數(shù)與基本初等函數(shù)I【下】 第8講 函數(shù)與方程)為本站會員(仙***)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!