NGW行星減速器的設(shè)計
NGW行星減速器的設(shè)計,NGW,行星減速器,設(shè)計
畢業(yè)設(shè)計(論文)中期報告
題目:NGW行星減速器的設(shè)計
1 論文進(jìn)展
1.1 選取行星齒輪傳動的傳動類型和傳動簡圖。
本設(shè)計為紡織傳動機(jī)械裝置設(shè)計所配用的行星齒輪減速器。已知輸出轉(zhuǎn)矩=4520Nm,傳動比=25.78,且要求該行星齒輪傳動結(jié)構(gòu)緊湊,軸向尺寸較小和傳動效率高。
根據(jù)上述設(shè)計要求:結(jié)構(gòu)簡單緊湊、軸向尺寸小、傳動效率高、傳動比較大。再結(jié)合各傳動類型的特點(diǎn),選擇NGW型行星傳動完全可以滿足要求,由于NGW型行星傳動的傳動比較小,因此,此次設(shè)計中為彌補(bǔ)NGW型行星傳動傳動比小的缺點(diǎn),采用二級傳動。其傳動簡圖如圖1.1所示。
1.2 齒輪材料、熱處理工藝及制造工藝的選定
按典型搭配,太陽輪、行星輪材料為20CrNiMo,表面滲碳淬火處理,表面硬度57~61HRC。試驗(yàn)齒輪齒面許用接觸疲勞極限=1450MPa試驗(yàn)齒輪齒根許用彎曲疲勞強(qiáng)度極限 1.1 傳動簡圖
太陽輪=400MPa
行星輪=400×0.7=280MPa
齒輪為漸開線直齒,最終加工為磨齒,精度為6級。
內(nèi)齒圈材料42CrMo,調(diào)質(zhì)處理,硬度為262~302HBS。
試驗(yàn)齒輪齒面許用接觸疲勞極限=750MPa
試驗(yàn)齒輪齒根許用彎曲疲勞強(qiáng)度極限=280MPa
齒形的最重加工為插齒,精度為7級。
1.3 確定各主要參數(shù)
1.3.1 傳動比分配
低速級傳動比 =0.5+2~5=0.5×+2~5=4.54~7.54
高速級傳動比 =/=3.42~5.67
經(jīng)過合理的分析 取=4.6,取=5.6
1.3.2 行星輪數(shù)目np
取np=np=3
1.4 能力參數(shù)設(shè)計
轉(zhuǎn)矩計算:
已知電動機(jī)的輸出轉(zhuǎn)矩=4520Nm.
根據(jù)公式p=計算可得:
可求得高速級輸出轉(zhuǎn)矩=1017Nm
1.5 配齒計算
低速級配齒
根據(jù)傳動比條件、同心條件和裝配條件聯(lián)立求解,得配齒計算式:
∶∶∶M=∶(-1)∶
將=5.6代人上式,結(jié)合考慮齒輪強(qiáng)度及傳動平穩(wěn)性等條件,取=17
則
=30
=79
高速級配齒
同上,將=4.6帶入得,取=19得:
=25
=71
1.6 確定齒輪齒數(shù)m和中心距a
1.6.1 低速級模數(shù)和中心距
根據(jù)下式確定小齒輪的分度圓直徑d,然后按幾何關(guān)系確定中心距a。
d=(“+”用于外嚙合,“-”用于內(nèi)嚙合)
式中 ——算式系數(shù),對于一般鋼制齒輪,直齒傳動=768;
——單對嚙合副中小齒輪名義轉(zhuǎn)矩N?m,
——使用系數(shù),由3得=1.25;
——計算接觸強(qiáng)度行星輪齒間載荷分布不均衡系數(shù);=1.1;
——綜合系數(shù),取=2.0硬齒面;
——齒寬系數(shù),暫取=0.5;
——試驗(yàn)齒輪的接觸疲勞強(qiáng)度(MPa),=1450MPa;
u——齒數(shù)比,u=:=1.76
計算可得
太陽輪分度圓d=46.75mm
行星輪分度圓d=82.50mm
內(nèi)齒圈分度圓d=217.25mm
模數(shù)
m===2.75mm
取m=3mm
計算中心矩
47=67.37mm
取=68mm
則齒寬b=d==25.5mm, 取26mm;
1.6.2 高速級模數(shù)和中心距
確定主要計算用參數(shù)
算式系數(shù)=768;
使用系數(shù)=1.25;
計算接觸強(qiáng)度行星輪間載荷分布不均衡系數(shù)=1.1;
綜合系數(shù)=2.0;
齒寬系數(shù)=0.5;
.試驗(yàn)齒輪的接觸疲勞強(qiáng)度=1450MPa;
齒數(shù)比u=:=25:19=1.32。
計算
將各參數(shù)代入式
d=
得
d=103.5mm
模數(shù)
m==103.5/19=5.4mm
取m=5mm(考慮到相鄰齒圈直徑比的要求)
則計算中心距 44=103.5
取a=104mm
則齒寬
b=d=0.5×5×19=47.5mm。
取b=48mm;
1.7 變位系數(shù)計算
1.7.1 低速級變位系數(shù)計算
嚙合角cos=cos
由于
所以 ==20°
變位系數(shù)和
計算得
太陽輪變?yōu)橄禂?shù)=0.549
行星輪變?yōu)橄禂?shù)=0.592
內(nèi)齒圈變?yōu)橄禂?shù)=0.592
1.7.2 高速級變位系數(shù)計算
同理:
太陽輪變?yōu)橄禂?shù)=0.559
行星輪變?yōu)橄禂?shù)=0.589
內(nèi)齒圈變?yōu)橄禂?shù)=0.589
1.8 幾何尺寸計算
分度圓 d=mz
齒頂圓
齒根圓 ,(“”號中正號用于外嚙合,負(fù)號用于內(nèi)嚙合。)
基圓
齒頂高系數(shù):
太陽輪、行星輪ha*=1
內(nèi)齒輪ha*=0.8
頂隙系數(shù):c*=0.25
齒高變動系數(shù)?y=0(高度變位直齒輪傳動)
根據(jù)上述公式計算
1.8.1 低速級:
太陽輪
d=3×17mm=51mm
=51+2×3×(1+0.11)=57.66mm
=51-2×3×(1+0.25-0.11)=44.16mm
=47.9mm
行星輪
d=3×30mm=90mm
=90+2×3×(1-0.11)mm=95.34mm
=90-2×3×(1+0.25+0.11)mm=81.84mm
=90cos20°mm=84.57mm
嚙齒圈
d=3×79mm=237mm
=237-2×3×(0.8+0.11)mm=231.54mm
=237+2×3×(0.8+0.25-0.11)mm=242.64mm
=237cos20°mm=222.7mm
1.8.2 高速級:
太陽輪
d=5×19mm=95mm
=95+2×5×(1+0.11)mm=106.1mm
=95-2×5×(1+0.25-0.11)mm=83.6mm
=95cos20°mm=89.27mm
行星輪
d=5×25mm=125mm
=125+2×5×(1-0.11)mm=133.9mm
=125-2×5×(1+0.25+0.11)mm=111.4mm
=125cos20°mm=117.46mm
嚙齒圈
d=5×71mm=355mm
=355-2×5×(0.8+0.11)mm=345.2mm
=355+2×5×(0.8+0.25-0.11)mm=366.6mm
=355cos20°mm=314.8mm
1.9 已經(jīng)完成的初步裝配圖,如圖1.2所示
圖1.2 行星減速器裝配圖
2 存在問題
目前我已經(jīng)計算出了行星減速器的主要參數(shù),但還存在著許多問題;主要問題有兩個,分別是聯(lián)軸器的選擇跟軸的選擇。對于這些問題我準(zhǔn)備去圖書館查閱相關(guān)資料,如果還不能解決就向老師求助。直到把問題都解決了。
3 后期工作安排
10~15周完善整個設(shè)計計算、完成裝配圖及零件圖的繪制等工作。
16~18周對所有圖紙進(jìn)行校核,編寫設(shè)計說明書,所有資料提請指導(dǎo)教師檢查,準(zhǔn)備畢業(yè)答辯。
指導(dǎo)教師簽字:
年 月 日
畢業(yè)設(shè)計(論文)開題報告
題目:NGW行星減速器的設(shè)計
1.畢業(yè)設(shè)計(論文)綜述。
1.1題目背景及研究意義
目前,行星傳動技術(shù)已成為世界各國機(jī)械傳動技術(shù)的重要發(fā)展方向,主要表現(xiàn)在廣泛采用硬齒面、高精度、高轉(zhuǎn)速、大功率、大轉(zhuǎn)矩、大規(guī)格,而且向多品種、標(biāo)準(zhǔn)化的方向發(fā)展。概括地講,在礦山、工程、冶金、起重、運(yùn)輸、輕工、石油化工、機(jī)床、汽車、機(jī)器人、坦克、火炮、飛機(jī)、船舶、儀器儀表等機(jī)械行業(yè)和高科技領(lǐng)域中,已普遍采用行星傳動作為減速、增速、差速、變速或控制裝置。
(1)行星齒輪傳動的優(yōu)點(diǎn)
①結(jié)構(gòu)緊湊、體積小、重量輕
行星傳動具有行星運(yùn)動和功率分流的傳動特性,采用內(nèi)齒輪副,可以充分利用內(nèi)嚙合承載能力大和內(nèi)齒圈內(nèi)部的可容空間,使其具有結(jié)構(gòu)緊湊、外廓尺寸小、重量輕等優(yōu)點(diǎn)。通常情況下,傳遞功率和傳動比相同時,行星傳動的體積和重量約為普通齒輪傳動的1/2~1/6。
②傳動比大,可實(shí)現(xiàn)運(yùn)動的合成與分解
行星傳動的類型很多,如漸開線行星傳動、擺線針輪行星傳動、諧波行星傳動及活齒行星傳動等,一般都具有大傳動比的特點(diǎn)。用于傳遞運(yùn)動時,其最大傳動比可達(dá)幾萬或數(shù)十萬以上;作為動力傳動,其最大傳動比可達(dá)幾十或數(shù)百。采用差動行星傳動,可實(shí)現(xiàn)兩個運(yùn)動的合成和一個運(yùn)動的分解。在某些情況下,適當(dāng)選擇行星傳動的類型,可實(shí)現(xiàn)各種變速的復(fù)雜運(yùn)動。
③效率高、功率損失小
行星傳動采用數(shù)個行星輪均勻分布在內(nèi)、外中心輪之間,可平衡作用于中心輪與行星架軸承上的慣性力。采用這種對稱結(jié)構(gòu),有利于提高傳動系統(tǒng)的效率。適當(dāng)選擇傳動類型,設(shè)計合理的結(jié)構(gòu),可使行星傳動的效率達(dá)到0.97~0.99。
④傳動平穩(wěn),抗沖擊振動能力強(qiáng)
采用數(shù)個行星輪均勻分布在兩個中心輪之間,同時用均載裝置保持各行星輪間載荷均勻分布和功率均勻分流,不僅可平衡各行星輪和轉(zhuǎn)臂的慣性力,而且顯著提高了行星傳動的平穩(wěn)性以及抗沖擊、振動的能力。
(2)行星齒輪傳動的缺點(diǎn)
行星齒輪傳動的主要缺點(diǎn)是材料優(yōu)質(zhì)、結(jié)構(gòu)復(fù)雜、制造和安裝較困難等。但隨著人們對行星傳動技術(shù)進(jìn)一步深人地了解以及對國外行星傳動技術(shù)的引進(jìn)和消化吸收,從而使其傳動結(jié)構(gòu)和均載方式都不斷完善,同時生產(chǎn)工藝水平也不斷提高。因此,對于它的制造安裝問題,目前已不再成為一件困難的事情。實(shí)踐表明,在具有中等技術(shù)水平的工廠里也完全可以制造出較好的行星齒輪傳動減速器。
1.2減速器的研究現(xiàn)狀及發(fā)展前景
國內(nèi)減速器發(fā)展概況:對行星齒輪傳動技術(shù)的開發(fā)及運(yùn)用在我國自上世紀(jì)五十年代就開始了,但直到改革開放前的相當(dāng)長的一段時間里,由于受設(shè)計理念與水平、加工手段與材料及熱處理質(zhì)量等方面的限制,我國各類行星齒輪減速箱的承載能力及可靠性都還處于一個比較低的水平,以至于我國許多行業(yè)配套的高性能行星齒輪箱,如磨機(jī)齒輪箱等都采用進(jìn)口產(chǎn)品。改革開放以來,隨著國內(nèi)多家單位相繼引進(jìn)了國外先進(jìn)的行星傳動生產(chǎn)和設(shè)計技術(shù)并在此基礎(chǔ)上進(jìn)行了消化吸收和創(chuàng)新開發(fā),使得國內(nèi)的行星傳動技術(shù)有了長足的進(jìn)步。在基礎(chǔ)研究方面,通過國內(nèi)相關(guān)高校、研究院所及企業(yè)的合作,在行星傳動的均載技術(shù)、優(yōu)化設(shè)計技術(shù)、結(jié)構(gòu)強(qiáng)度分析、系統(tǒng)運(yùn)動學(xué)與動力學(xué)分析及制造裝配技術(shù)等方面都取得了一系列的突破,使得我國已全面掌握了行星傳動的設(shè)計、制造技術(shù)并形成了一批具有較強(qiáng)實(shí)力的研發(fā)制造機(jī)構(gòu)。繼西安重型機(jī)械研究所聯(lián)合多家單位推出國內(nèi)第一代通用行星齒輪減速器產(chǎn)品系列并完成其標(biāo)準(zhǔn)化工作后,目前正在推出性能更為先進(jìn)、結(jié)構(gòu)更為合理的新一代行星齒輪減速器產(chǎn)品。與此同時,國內(nèi)其他單位也開發(fā)出了一系列專用行星齒輪產(chǎn)品。在制造手段方面,近二十年來通過引進(jìn)及自主開發(fā)的磨齒機(jī)、插齒機(jī)、加工中心及熱處理裝置的廣泛運(yùn)用,大大提升了制造水平,在硬件上也切實(shí)保證了產(chǎn)品的加工質(zhì)量。
目前,國內(nèi)開發(fā)的重載行星傳動裝置已成功運(yùn)用于許多多年來一直采用國外產(chǎn)品的領(lǐng)域。如西重所開發(fā)的運(yùn)用于鋁鑄壓機(jī)的行星齒輪箱最大輸出力矩已達(dá)到600KN·m,運(yùn)用于水泥滾壓機(jī)的大型行星齒輪箱的輸出力矩已達(dá)到400KN·m,均成功替代了進(jìn)口產(chǎn)品。國內(nèi)生產(chǎn)的運(yùn)用于磨機(jī)的行星齒輪箱的最大功率已達(dá)到3600KW,運(yùn)用于中小功率的行星齒輪箱更是數(shù)不勝數(shù)。二十余年的實(shí)踐與運(yùn)用證明目前我國的行星傳動齒輪箱的設(shè)計制造已達(dá)到與先進(jìn)工業(yè)國家相當(dāng)?shù)乃?,完全可滿足為國內(nèi)格行業(yè)傳動配套的的需求。
國外減速器發(fā)展概況:國外的行星齒輪傳動技術(shù)以德國、丹麥和日本處于領(lǐng)先地位,特別在材料和制造工藝方面占據(jù)優(yōu)勢。1880年德國第一個行星齒輪傳動裝置的專利出現(xiàn)了。19世紀(jì)以來,隨著機(jī)械工業(yè)特別是汽車和飛機(jī)工業(yè)的發(fā)展,對行星齒輪傳動的發(fā)展有很大的影響。1920年首次成批制造出行星齒輪傳動裝置,并首先用于汽車的差速器。1938年起集中發(fā)展汽車用的行星齒輪傳動裝置。二次世界大戰(zhàn)后,高速大功率船艦、透平發(fā)電機(jī)組、透平壓縮機(jī)組、航空發(fā)動機(jī)及工程機(jī)械的發(fā)展,促進(jìn)行星齒輪傳動的發(fā)展。
高速大功率行星齒輪傳動廣泛的實(shí)際應(yīng)用,于1951年首先在德國獲得成功。1958年后,英、意、日、美、蘇、瑞士等國亦獲得成功,均有系列產(chǎn)品,并已成批生產(chǎn),普遍應(yīng)用。英國Allen齒輪公司生產(chǎn)的壓縮機(jī)用行星減速器,功率25740kW;德國Renk公司生產(chǎn)的船用行星減速器,功率11030kW。低速重載行星減速器已由系列產(chǎn)品發(fā)展到生產(chǎn)特殊用產(chǎn)品,如法國Citroen生產(chǎn)用于水泥磨、榨糖機(jī)、礦山設(shè)備的行星減速器,重量達(dá)125t,輸出轉(zhuǎn)矩3900kW·m;德國Renk公司生產(chǎn)礦井提升機(jī)的行星減速器,功率1600kW,傳動比13,輸出 轉(zhuǎn)矩350 kW·m;日本宇都興產(chǎn)公司生產(chǎn)了一臺3200 kW,傳動比720/280,輸出轉(zhuǎn)矩2100 kW·m的行星減速器。
2.本課題研究的主要內(nèi)容和采用的研究方案,措施。
2.1研究的主要內(nèi)容
設(shè)計一個NGW行星減速器,要求傳動比為i=25.78,輸出轉(zhuǎn)矩Tc=4520Nm。
其中N-內(nèi)嚙合齒輪,W-外嚙合齒輪,G-同時與兩個中心輪相嚙合的公共齒輪。根據(jù)給定要求可以知道我們要設(shè)計一個具有內(nèi)嚙合和外嚙合,同時還就有一個公共齒輪的行星齒輪傳動如左圖所示。但由于NGW行星減速器的傳動比較小的缺點(diǎn),采用二級傳動。其傳動簡圖如右圖所示。具體內(nèi)容如下:
(1)擇傳動方案,確定傳動類型的。
(2)設(shè)計計算及校核。傳動結(jié)構(gòu)的設(shè)計計算,都大致包括:
①.選擇傳動方案。
②.傳動零件齒輪的設(shè)計計算與校核。
③.軸的設(shè)計計算與校核。
④.軸承的選型與壽命計算。
⑤.鍵的選擇與強(qiáng)度計算。
⑥.箱體的設(shè)計。
⑦.潤滑與密封的選擇等。
(3)在對行星齒輪減速器的結(jié)構(gòu)進(jìn)行深入分析的基礎(chǔ)上,依據(jù)給定的減速器設(shè)計的主要參數(shù),通過CAD繪圖軟件建立行星齒輪減速器各零件的二維平面圖,繪制出減速器的總裝圖對其進(jìn)行分析。
2.2設(shè)計方法
常規(guī)方法是:先選行星輪個數(shù),再按配齒條件進(jìn)行配齒,這種配齒結(jié)果不是唯一的??筛鶕?jù)結(jié)構(gòu)布置和設(shè)計者經(jīng)驗(yàn),從中選擇一組齒數(shù)方案,在按強(qiáng)度計算模數(shù)、齒寬等參數(shù)。在確定結(jié)構(gòu)參數(shù)時,要獲得既能滿足性能要求,結(jié)構(gòu)尺寸又合理的方案,就必須進(jìn)行大量計算。因此
(1)熟悉行星減速器工作狀況和設(shè)計要求,對其結(jié)構(gòu)形狀進(jìn)行分析,得出總體方案。
(2)按照總體方案對各零部件的運(yùn)動關(guān)系進(jìn)行分析得出行星減速器的整體結(jié)構(gòu)尺寸,然后以各個系統(tǒng)為模塊分別進(jìn)行具體的零部件的設(shè)計校核計算,得出各零部件的尺寸,再重新調(diào)整整體結(jié)構(gòu)。
(3)利用AutoCAD軟件畫出行星減速器的總裝配圖以及若干零件圖
(4) 檢查行星減速器的裝配圖,確保其準(zhǔn)確性。
(5) 如果時間允許做出三維圖,可以更直觀的表現(xiàn)出來。
3.研究的主要的難點(diǎn)及重點(diǎn)
NGW行星減速器的設(shè)計有一大部分的工作就是計算與合理性的驗(yàn)證這是最基礎(chǔ)的東西也是最難的部分,所以難點(diǎn)主要在于設(shè)計過程中各個零部件參數(shù)的計算與選擇,還有后期三維運(yùn)動仿真圖的制作。
4.本課題工作方案及進(jìn)度安排
1-2周:查資料熟悉NGW行星減速器的發(fā)展史,以及國內(nèi)外的研究現(xiàn)狀。咨詢老師,翻越相關(guān)書籍了解NGW行星減速器的工作原理,做出裝置簡圖。翻譯外文資料,準(zhǔn)備開題。
3-5周:總體方案的設(shè)計,根據(jù)題目所給相關(guān)數(shù)據(jù)和自己所了解的知識在老師的 幫助下做出一下計算出:
傳動比分配,行星輪數(shù)目,能力參數(shù),配齒,齒輪模數(shù)和中心距。變位系數(shù), 幾何尺寸,嚙合計算,強(qiáng)度驗(yàn)算,傳動效率計算,齒輪結(jié)構(gòu)設(shè)計計算,其他主要零部件計算。
6-11周:完成裝NGW行星減速器的總配圖,以及各部分零件圖,如有多余時間嘗試畫出三維圖;
12-15周:完成論文及翻譯,修改細(xì)節(jié)部分,準(zhǔn)備答辯。
參考文獻(xiàn)
【1】漸開線齒輪行星傳動的設(shè)計與制造編委會著,漸開線齒輪行星傳動的設(shè)計與制造,機(jī)械工業(yè)出版社,2003
【2】姚家娣、李明、黃興元主編.機(jī)械設(shè)計指導(dǎo).南昌:江西高校出版社,2001
【3】任嘉卉、李建平主編.機(jī)械設(shè)計課程設(shè)計.北京:北京航空航天大學(xué)出版社,2001
【4】濮良貴、紀(jì)名剛主編.機(jī)械設(shè)計.北京:高等教育出版社,2001
【5】孫桓、陳作模主編.機(jī)械原理.北京:高等教育出版社,2000
【6】饒振綱編著.行星齒輪傳動設(shè)計.北京:化學(xué)工業(yè)出版社,2003
【7】機(jī)械設(shè)計手冊.第3版,2004
【8】行星齒輪傳動系中嚙合相位關(guān)系[J].汽車技術(shù),2004(01)
【9】陳鐵鳴.新編機(jī)械設(shè)計課程設(shè)計圖冊[M].北京:高等教育出版社,2003
【10】紀(jì)名剛等.機(jī)械設(shè)計[M].第八版.高等教育出版社,2005(12)
【11】張展等.減速器設(shè)計選用手冊[M].上??茖W(xué)技術(shù)出版社,2002(05)
【12】程乃士.減速器和變速器設(shè)計與選用手冊[M].機(jī)械工業(yè)出版社,2007(01)
【13】王先逵.機(jī)械制造工藝學(xué)[M].第二版.北京:機(jī)械工業(yè)出版社,2005
【14】陳玉萍 周兆元. 互換性與測量技術(shù)基礎(chǔ)第二版. 北京: 機(jī)械工業(yè)出版社,2008 黃世清 王世左. 計算機(jī)輔助機(jī)械零件設(shè)計. 上海交通大學(xué)出版社1991 【15】文九巴. 機(jī)械工程材料第2版. 北京: 機(jī)械工業(yè)出版社,2009
【16】葛楠 張俊.Finite Element Analysis of Internal Gear in High-Speed Planetary Gear Units[J].天津大學(xué)學(xué)報(英文版),2008,14(1):11-15.
【17】KIM Yeoung-il KIM Li-ra JUN Cha-soo.Parametric design of a part with free-form surfaces[J].浙江大學(xué)學(xué)報(A卷英文版),2006,7(9):1530-1534.
【18】張俊 宋軼民 張策.Design and Dynamics Simulation of a Novel Double-Ring-Plate Gear Reducer[J].天津大學(xué)學(xué)報(英文版),2007,13(3):163-168.
指導(dǎo)教師意見(對課題的深度、廣度及工作量的意見)
指導(dǎo)教師: 年 月 日
所在系審查意見:
系主管領(lǐng)導(dǎo): 年 月 日
本科畢業(yè)設(shè)計(論文)
題目:NGW行星減速器的設(shè)計
NGW行星減速器的設(shè)計
摘 要
本文完成了行星齒輪減速機(jī)的結(jié)構(gòu)設(shè)計。該減速機(jī)具有結(jié)構(gòu)緊湊、傳動效率高、外廓尺寸小和重量輕、承載能力大、運(yùn)動平穩(wěn)、抗沖擊和震動的能力較強(qiáng)、噪聲低的特點(diǎn),適用于化工、輕工業(yè)以及機(jī)器人等領(lǐng)域。這些功用對于現(xiàn)代機(jī)械傳動的發(fā)展有著較重要的意義。
首先簡要介紹了課題的背景以及齒輪減速機(jī)的研究現(xiàn)狀和發(fā)展趨勢,然后比較了各種傳動結(jié)構(gòu),從而確定了傳動的基本類型。論文主體部分是對傳動機(jī)構(gòu)主要構(gòu)件包括太陽輪、行星輪、內(nèi)齒圈及行星架的設(shè)計計算,通過所給的輸出功率、傳動比及工況系數(shù)確定齒輪減速機(jī)的大致結(jié)構(gòu)之后,對其進(jìn)行了整體結(jié)構(gòu)的設(shè)計計算和主要零部件的強(qiáng)度校核計算。其中該減速機(jī)的設(shè)計與其他減速機(jī)的結(jié)構(gòu)設(shè)計相比有三大特點(diǎn):其一,為了使三個行星輪的載荷均勻分配,采用了齒式浮動機(jī)構(gòu),即太陽輪與高速軸通過齒式聯(lián)軸器將二者連接在一起,從而實(shí)現(xiàn)了太陽輪的浮動;其二,該減速機(jī)的箱體采用的是臥式箱體;其三,內(nèi)齒圈與箱體采用分離式,通過螺釘箱體固定在一起。最后對整個設(shè)計過程進(jìn)行了總結(jié),基本上完成了對該減速機(jī)的整體結(jié)構(gòu)設(shè)計。
關(guān)鍵詞:行星齒輪;傳動機(jī)構(gòu);結(jié)構(gòu)設(shè)計;校核計算
The Design of NGW Planetary Gear Reducer
Abstract
This completed a single-stage planetary gear reducer design.The gear has a smaller transmission ratio,and it has a compact,high transmission efficiency,outline,small size and light weight,carrying capacity,smooth motion,shock and vibration resistant and low noise characteristics,Used in chemical,light industry and robotics fields.The function of the development of modern mechanical transmission has a more important significance.
First paper introduces the background and the subject of gear reducer situation and development trend,and then compared various transmission structures,which determine the basic type of transmission.Thesis is the main part of the main components of drive mechanism including the sun wheel,planet gear,ring gear and planet carrier in the design calculation,given by the input power,gear ratio,input speed and the condition factor to determine the approximate structure after the gear reducer And to carry out the design and calculation of the overall structure and main components of the strength check calculation.One of the other gear reducer design and compared the structural design of the three major characteristics: First,the three planetary gear to make the load evenly,using a gear-type floating body,the sun gear and high-speed shaft through the gear together Coupling the two together to achieve a floating sun gear; Second,the box uses a reducer flange box,upper and lower box were cast; Third,the ring gear and Box with separate,through bolts and tapered pins will be fixed together with the upper and lower box.Finally,a summary of the entire design process is basically complete the overall design of the reducer.
Key Words: Planetary gear;Driving machanism;Structural design;Checking calculation
I
主要符號表
a 中心矩
b 齒輪寬度
d 軸的直徑
h 軸肩高度
i 傳動比
K 載荷系數(shù)
L 軸的長度
m 齒輪模數(shù)
n 軸的轉(zhuǎn)速
np 行星輪數(shù)目
Na 應(yīng)力循環(huán)次數(shù)
t 總運(yùn)轉(zhuǎn)時間
T 轉(zhuǎn)矩
W 軸的抗彎截面系數(shù)
x 齒輪變位系數(shù)
軸傳遞的功率
齒數(shù)
傳動效率
齒輪分度圓直徑
齒輪基圓直徑
齒輪節(jié)圓直徑
齒頂圓直徑
齒根圓直徑
孔距相對偏差
偏心誤差
嚙合損失系數(shù)
折合系數(shù)
齒輪嚙合角
端面重合度
ρa(bǔ) 頂圓齒形曲徑
ga 端面嚙合長度
齒頂高系數(shù)
C* 齒輪頂隙系數(shù)
扭轉(zhuǎn)切應(yīng)力
齒寬系數(shù)
當(dāng)量載荷
軸承壽命
中心距變位系數(shù)
齒頂高變位系數(shù)
應(yīng)力修正系數(shù)
齒形系數(shù)
螺旋角系數(shù)
尺寸系數(shù)
應(yīng)力修正系數(shù)
壽命系數(shù)得
齒根表面狀況系數(shù)
相對齒根圓角敏感系數(shù)
中心距極限偏差
嚙合摩擦系數(shù)
擊載荷系數(shù)
圓周力
法向力
切向力
支反力
齒面接觸疲勞極限
齒面彎曲疲勞極限
齒根彎曲應(yīng)力
齒輪許用彎曲應(yīng)力
軸的計算應(yīng)力
軸的許用彎曲應(yīng)力
、 重合度系數(shù)
水平面彎矩
垂直面彎矩
使用系數(shù)
動載荷系數(shù)
、 齒間載荷分布系數(shù)
、 齒向載荷分布系數(shù)
III
1
目 錄
1 緒 論 1
2 傳動方案的確定 5
2.1 設(shè)計任務(wù) 5
2.1.1 齒輪傳動的特點(diǎn) 5
2.1.2 齒輪傳動的兩大類型 5
2.2 行星機(jī)構(gòu)的類型及特點(diǎn) 6
3 行星齒輪傳動設(shè)計 9
3.1 行星齒輪傳動類型 9
3.2 齒輪材料、熱處理工藝及制造工藝的選定 9
3.3 確定各主要參數(shù) 10
3.3.1 傳動比分配 10
3.3.2 行星輪數(shù)目np 10
3.3.3 配齒計算 10
3.3.4 確定齒輪齒數(shù)m和中心距a 10
3.3.5 變位系數(shù)計算 12
3.3.6 幾何尺寸計算 13
3.3.7 嚙合計算 14
3.3.8 齒輪強(qiáng)度校核計算 15
3.3.9齒輪結(jié)構(gòu)設(shè)計 22
3.3.10 傳動效率 23
4 其他主要零部件設(shè)計 24
4.1 高速級行星輪軸及其軸承設(shè)計 24
4.1.1 行星輪軸直徑計算和軸承的選取 24
4.1.2 軸承壽命計算 24
4.2 低速級行星輪軸及其軸承設(shè)計 24
4.2.1 行星輪軸直徑計算和軸承的選取 25
4.2.2 軸承壽命計算 25
4.3 低速軸、中間軸、高速軸及其軸承設(shè)計 25
4.3.1 輸入軸設(shè)計 25
4.3.2 中間軸設(shè)計 27
4.3.3 輸出軸設(shè)計 28
4.4 行星架結(jié)構(gòu)方案 29
4.4.1 雙側(cè)板整體式轉(zhuǎn)臂 29
4.4.2 雙側(cè)板分開式轉(zhuǎn)臂 30
4.4.3 單側(cè)板式轉(zhuǎn)臂 30
4.5 齒輪聯(lián)軸器的結(jié)構(gòu)和特點(diǎn) 32
4.5.1 確定高速級分度圓直徑、模數(shù)和齒數(shù) 33
4.5.2 確定低速級分度圓直徑、模數(shù)和齒數(shù) 34
5 減速器箱體及其潤滑 36
5.1 箱體設(shè)計 36
5.1.1 箱體結(jié)構(gòu)設(shè)計 36
5.1.2 機(jī)體主要尺寸的確定 37
5.2 減速器潤滑 38
5.2.1 齒輪的潤滑 38
5.2.2 軸承的潤滑 38
6 三維建模 39
6.1 零件圖 39
6.2 裝配圖 42
7 結(jié) 論 45
參考文獻(xiàn) 46
致 謝 47
V
1 緒 論
0
本課題通過對行星齒輪減速機(jī)的結(jié)構(gòu)設(shè)計,初步計算出各零件的設(shè)計尺寸和裝配尺寸,并對涉及結(jié)果進(jìn)行參數(shù)化分析,為行星齒輪減速機(jī)產(chǎn)品的開發(fā)和性能評價實(shí)現(xiàn)行星齒輪減速機(jī)規(guī)?;a(chǎn)提供了參考和理論依據(jù)。通過本設(shè)計,要能弄懂該減速機(jī)的傳動原理,達(dá)到對所學(xué)知識的復(fù)習(xí)與鞏固,從而在以后的工作中能解決類似的問題。
1.1齒輪減速機(jī)的研究現(xiàn)狀
齒輪是使用量大面廣的傳動元件。目前世器上齒輪最大傳遞功率已達(dá)6500kW,最大線速度達(dá)210m/s(在實(shí)驗(yàn)室中達(dá)300m/s);齒輪最大重量達(dá)200t,最大直徑達(dá) (組合式),最大模數(shù)m達(dá)50mm。我國自行設(shè)計的高速齒輪(增)減速機(jī)的功率已達(dá)44000kW,齒輪圓周速度達(dá)150m/s以上。
由齒輪、軸、軸承及箱體組成的齒輪減速機(jī),用于原動機(jī)和工作機(jī)或執(zhí)行機(jī)構(gòu)之間,起匹配轉(zhuǎn)速和傳遞轉(zhuǎn)矩的作用,在現(xiàn)代機(jī)械中應(yīng)用極為廣泛。
20世紀(jì)末的20多年,世界齒輪技術(shù)有了很大的發(fā)展。產(chǎn)品發(fā)展的總趨勢是小型化、高速化、低噪聲、高可靠度。技術(shù)發(fā)展中最引人注目的是硬齒面技術(shù)、功率分支技術(shù)和模塊化設(shè)計技術(shù)。
硬齒面技術(shù)到20世紀(jì)80年代時在國外日趨成熟。采用優(yōu)質(zhì)合金鋼鍛件滲碳淬火磨齒的硬齒面齒輪,精度不低于IS01328一1975的6級,綜合承載能力為中硬齒面調(diào)質(zhì)齒輪的4倍,為軟齒而齒輪的5一6倍。一個中等規(guī)格的硬齒面齒輪減速機(jī)的重量僅為軟齒面齒輪減速機(jī)的1/3左右。
功率分支技術(shù)主要指行星及大功率齒輪箱的功率雙分及多分支裝置,如中心傳動的水泥磨主減速機(jī),其核心技術(shù)是均載。
模塊化設(shè)計技術(shù)對通用和標(biāo)準(zhǔn)減速機(jī)旨在追求高性能和滿足用戶多樣化大覆蓋面需求的同時,盡可能減少零部件及毛坯的品種規(guī)格,以便于組織生產(chǎn),使零部件生產(chǎn)形成批量,降低成本,取得規(guī)模效益。
其他技術(shù)的發(fā)展還表現(xiàn)在理論研究(如強(qiáng)度計算、修形技術(shù)、現(xiàn)代設(shè)計方法的應(yīng)用,新齒形、新結(jié)構(gòu)的應(yīng)用等)更完善、更接近實(shí)際;普遍采用各種優(yōu)質(zhì)合金鋼鍛件;材料和熱處理質(zhì)量控制水平的提高;結(jié)構(gòu)設(shè)計更合理;加工精度普遍提高到ISO的4一6級;軸承質(zhì)量和壽命的提高;潤滑油質(zhì)量的提高;加工裝備和檢測手段的提高等方面。
這些技術(shù)的應(yīng)用和日趨成熟,使齒輪產(chǎn)品的性能價格比大大提.高,產(chǎn)品越來越完美。如非常粗略地估計一下,輸出IOONm轉(zhuǎn)矩的齒輪裝置,如果在1950年時重10kg,到80年代就可做到僅約lkg。
20世紀(jì)70年代至90年代初,我國的高速齒輪技術(shù)經(jīng)歷了測繪仿制、技術(shù)引進(jìn)(技術(shù)攻關(guān))到獨(dú)立設(shè)計制造3個階段。現(xiàn)在我國的設(shè)計制造能力基本上可滿足國內(nèi)生產(chǎn)需要,設(shè)計制造的最高參數(shù):最大功率44MW,最高線速度168m/s,最高轉(zhuǎn)速67000r/min。
我國的低速重載齒輪技術(shù),特別是硬齒面齒輪技術(shù)也經(jīng)歷了測繪仿制等階段,從無到有逐步發(fā)展起來。除了摸索掌握制造技術(shù)外,在20世紀(jì)80年代末至90年代初推廣硬齒面技術(shù)過程中,我們還作了解決“斷軸”、“選用”等一系列有意義的工作。在20世紀(jì)70-80年代一直認(rèn)為是國內(nèi)重載齒輪兩大難題的“水泥磨減速機(jī)”和“軋鋼機(jī)械減速機(jī)”,可以說已完全解決。
20世紀(jì)80年代至90年代初,我國相繼制訂了一批減速機(jī)標(biāo)準(zhǔn),如ZBJ19004一88《圓柱齒輪減速機(jī)》、ZBJ19026一90《運(yùn)輸機(jī)械用減速機(jī)》和YB/T050一93《冶金設(shè)備用YNK齒輪減速機(jī)》等幾個硬齒面減速機(jī)標(biāo)準(zhǔn),我國有自己知識產(chǎn)權(quán)的標(biāo)準(zhǔn),如YB/T079 - 95《三環(huán)減速機(jī)》。按這些標(biāo)準(zhǔn)生產(chǎn)的許多產(chǎn)品的主要技術(shù)指標(biāo)均可達(dá)到或接近國外同類產(chǎn)品的水平,其中YNK減速機(jī)較完整地吸取了德國FLENDER公司同類產(chǎn)品的特點(diǎn),并結(jié)合國情作了許多改進(jìn)與創(chuàng)新。
(1)漸開線行星齒輪效率的研究
行星齒輪傳動的效率作為評價器傳動性能優(yōu)劣的重要指標(biāo)之一,國內(nèi)外有許多學(xué)者對此進(jìn)行了系統(tǒng)的研究?,F(xiàn)在,計算行星齒輪傳動效率的方法很多,國內(nèi)外學(xué)者提出了許多有關(guān)行星齒輪傳動效率的計算方法,在設(shè)計計算中,較常用的計算方有3種:嚙合功率法、力偏移法、和傳動比法(克萊依涅斯法),其中以嚙合功率法的用途最為廣泛,此方法用來計算普通的2K2H和3K型行星齒輪的效率十分方便。
(2)漸開線行星齒輪均載分析的研究現(xiàn)狀
行星齒輪傳動具有結(jié)構(gòu)緊湊、質(zhì)量小、體積小、承載能力大等優(yōu)點(diǎn)。這些都是由于在其結(jié)構(gòu)上采用了多個行星輪的傳動方式,充分利用了同心軸齒輪之間的空間,使用了多個行星輪來分擔(dān)載荷,形成功率流,并合理的采用了內(nèi)嚙合傳動,從而使其具備了上述的許多優(yōu)點(diǎn)。但是,這只是最理想的情況,而在實(shí)際應(yīng)用中,由于加工誤差和裝配誤差的存在,使得在傳動過程中各個行星輪上的載荷分配不均勻,造成載荷有集中在一個行星輪上的現(xiàn)象,這樣,行星齒輪的優(yōu)越性就得不到發(fā)揮,甚至不如普通的外傳動結(jié)構(gòu)。所以,
5
為了更好的發(fā)揮行星齒輪的優(yōu)越性,均載的問題就成了一個十分重要的課題。在結(jié)構(gòu)方面,起初人們只努力地提高齒輪的加工精度,從而使得行星齒輪的制造和裝配變得比較困難。后來通過時間采取了對行星齒輪的基本構(gòu)件徑向不加限制的專門措施和其它可自動調(diào)位的方法,即采用各種機(jī)械式地均載機(jī)構(gòu),以達(dá)到各行星輪間的載荷分布均勻的目的。典型的幾種均載機(jī)構(gòu)有基本構(gòu)件浮動的均載機(jī)構(gòu)、杠桿聯(lián)動均載機(jī)構(gòu)和采用彈性件的均載機(jī)構(gòu)。
1.2齒輪減速機(jī)的發(fā)展趨勢
隨著我國市場經(jīng)濟(jì)的推進(jìn),“九五”期間,齒輪行業(yè)的專業(yè)化生產(chǎn)水平有了明顯提高,如一汽、二汽等大型企業(yè)集團(tuán)的齒輪變速箱廠、車轎廠,通過企業(yè)改組、改制,改為相對獨(dú)立的專業(yè)廠,參與市場競爭;隨著軍工轉(zhuǎn)民用,農(nóng)機(jī)齒輪企業(yè)轉(zhuǎn)加工非農(nóng)用齒輪產(chǎn)品,調(diào)整了企業(yè)產(chǎn)品結(jié)構(gòu);私有企業(yè)的堀起,中外合資企業(yè)的涌現(xiàn),齒輪行業(yè)的整體結(jié)構(gòu)得到優(yōu)化,行業(yè)實(shí)力增強(qiáng),技術(shù)進(jìn)步加快。
近十幾年來,計算機(jī)技術(shù)、信息技術(shù)、自動化技術(shù)在機(jī)械制造中的廣泛應(yīng)用,改變了制造業(yè)的傳統(tǒng)觀念和生產(chǎn)組織方式。一些先進(jìn)的齒輪生產(chǎn)企業(yè)已經(jīng)采用精益生產(chǎn)、敏捷制造、智能制造等先進(jìn)技術(shù)。形成了高精度、高效率的智能化齒輪生產(chǎn)線和計算機(jī)網(wǎng)絡(luò)化管理。
適應(yīng)市場要求的新產(chǎn)品開發(fā),關(guān)鍵工藝技術(shù)的創(chuàng)新競爭,產(chǎn)品質(zhì)量競爭以及員工技術(shù)素質(zhì)與創(chuàng)新精神,是2l世紀(jì)企業(yè)競爭的焦點(diǎn)。在2l世紀(jì)成套機(jī)械裝備中,齒輪仍然是機(jī)械傳動的基本部件。由于計算機(jī)技術(shù)與數(shù)控技術(shù)的發(fā)展,使得機(jī)械加工精度、加工效率太為提高,從而推動了機(jī)械傳動產(chǎn)品多樣化,整機(jī)配套的模塊化、標(biāo)準(zhǔn)化,以及造型設(shè)計藝術(shù)化,使產(chǎn)品更加精致、美觀。
CNC機(jī)床和工藝技術(shù)的發(fā)展,推動了機(jī)械傳動結(jié)構(gòu)的飛速發(fā)展。在傳動系統(tǒng)設(shè)計中的電子控制、液壓傳動,齒輪、帶鏈的混合傳動,將成為變速箱設(shè)計中優(yōu)化傳動組合的方向。在傳動設(shè)計中的學(xué)科交叉,將成為新型傳動產(chǎn)品發(fā)展的重要趨勢。
工業(yè)通用變速箱是指為各行業(yè)成套裝備及生產(chǎn)線配套的大功率和中小功率變速箱。國內(nèi)的變速箱將繼續(xù)淘汰軟齒面,向硬齒面(50~60HRC)、高精度(4~5級)、高可靠度軟啟動、運(yùn)行監(jiān)控、運(yùn)行狀態(tài)記錄、低噪聲、高的功率與體積比和高的功率與重量比的方向發(fā)展。中小功率變速箱為適應(yīng)機(jī)電一體化成套裝備自動控制、自動調(diào)速、多種控制與通訊功能的接口需要,產(chǎn)品的結(jié)構(gòu)與外型在相應(yīng)改變。矢量變頻代替直流伺服驅(qū)動,已成為近年中小功率變速箱產(chǎn)品(如擺輪針輪傳動、諧波齒輪傳動等)追求的目標(biāo)。
隨著我國航天、航空、機(jī)械、電子、能源及核工業(yè)等方面的快速發(fā)展和工業(yè)機(jī)器人等在各工業(yè)部門的應(yīng)用,我國在諧波傳動技術(shù)應(yīng)用方面已取得顯著成績。同時,隨著國家高新技術(shù)及信息產(chǎn)業(yè)的發(fā)展,對諧波傳動技術(shù)產(chǎn)品的需求將會更加突出。
總之,當(dāng)今世界各國減速機(jī)及齒輪技術(shù)發(fā)展總趨勢是向六高、二低、二化方面發(fā)展。六高即高承載能力、高齒面硬度、高精度、高速度、高可靠性和高傳動效率;二低即低噪聲、低成本;二化即標(biāo)準(zhǔn)化、多樣化。
減速機(jī)和齒輪的設(shè)計與制造技術(shù)的發(fā)展,在一定程度上標(biāo)志著一個國家的工業(yè)水平,因此,開拓和發(fā)展減速機(jī)和齒輪技術(shù)在我國有廣闊的前景。
1.3論文的基本內(nèi)容:
(1)選擇傳動方案。傳動方案的確定包括傳動比的確定和傳動類型的確定。
(2)設(shè)計計算及校核。傳動結(jié)構(gòu)的設(shè)計計算,都大致包括:選擇傳動方案、傳動零件齒輪的設(shè)計計算與校核、軸的設(shè)計計算與校核、軸承的選型與壽命計算、鍵的選擇與強(qiáng)度計算、箱體的設(shè)計、潤滑與密封的選擇等。
在對行星齒輪減速機(jī)的結(jié)構(gòu)進(jìn)行深入分析的基礎(chǔ)上,依據(jù)給定的減速機(jī)設(shè)計的主要參數(shù),通過CAD繪圖軟件建立行星齒輪減速機(jī)各零件的二維平面圖,繪制出減速機(jī)的總裝圖對其進(jìn)行分析。
2 傳動方案的確定
2.1 設(shè)計任務(wù)
設(shè)計一個行星齒輪傳動減速機(jī)。
原始條件和數(shù)據(jù):
傳動比i=25.78,輸轉(zhuǎn)矩p=4520Nm。且要求該齒輪傳動結(jié)構(gòu)緊湊、外廓尺寸較小,選擇Y200L2-6號電機(jī),輸入轉(zhuǎn)速為1000r/min。
2.1.1 齒輪傳動的特點(diǎn)
齒輪傳動與其它傳動比較,具有瞬時傳動比恒定、工作可靠、壽命長、效率高、可實(shí)現(xiàn)平行軸任意兩相交軸和交錯軸之間的傳動,適應(yīng)的圓周速度和傳動功率范圍大,但齒輪傳動的制造成本高,低精度齒輪傳動時噪聲和振動較大,不適宜于兩軸間距離較大的傳動。
齒輪傳動是以主動輪的輪齒依次推動從動輪來進(jìn)行工作的,是是現(xiàn)代機(jī)械中應(yīng)用十分廣泛的一種傳動形式。齒輪傳動可按一對齒輪軸線的相對位置來劃分,也可以按工作條件的不同來劃分。
隨著行星傳動技術(shù)的迅速發(fā)展,目前,高速漸開線行星齒輪傳動裝置所傳遞的功率已達(dá)到20000kW,輸出轉(zhuǎn)矩已達(dá)到4500kN.M。據(jù)有關(guān)資料介紹,人們認(rèn)為目前行星齒輪傳動技術(shù)的發(fā)展方向如下。
(1)標(biāo)準(zhǔn)化、多品種 目前世界上已有50多個漸開線行星齒輪傳動系列設(shè)計;而且還演化出多種型式的行星減速機(jī)、差速器和行星變速器等多品種的產(chǎn)品。
(2)硬齒面、高精度 行星傳動機(jī)構(gòu)中的齒輪廣泛采用滲碳和氮化等化學(xué)熱處理。齒輪制造精度一般均在6級以上。顯然,采用硬齒面、高精度有利于進(jìn)一步提高承載能力,使齒輪尺寸變得更小。
(3)高轉(zhuǎn)速、大功率 行星齒輪傳動機(jī)構(gòu)在高速傳動中,如在高速汽輪中已獲得日益廣泛的應(yīng)用,其傳動功率也越來越大。
(4)大規(guī)格、大轉(zhuǎn)矩 在中低速、重載傳動中,傳遞大轉(zhuǎn)矩的大規(guī)格的行星齒輪傳動已有了較大的發(fā)展。
2.1.2 齒輪傳動的兩大類型
輪系可由各種類型的齒輪副組成。由錐齒輪、螺旋齒輪和蝸桿渦輪組成的
輪系,稱為空間輪系;而由圓柱齒輪組成的輪系,稱為平面輪系。
根據(jù)齒輪系運(yùn)轉(zhuǎn)時各齒輪的幾何軸線相對位置是否變動,齒輪傳動分為兩大類型。
(1)普通齒輪傳動(定軸輪系)
當(dāng)齒輪系運(yùn)轉(zhuǎn)時,如果組成該齒輪系的所有齒輪的幾何位置都是固定不變的,則稱為普通齒輪傳動(或稱定軸輪系)。在普通齒輪傳動中,如果各齒輪副的軸線均相互平行,則稱為平行軸齒輪傳動;如果齒輪系中含有一個相交軸齒輪副或一個相錯軸齒輪副,則稱為不平行軸齒輪傳動(空間齒輪傳動)。
(2)行星齒輪傳動(行星輪系)
當(dāng)齒輪系運(yùn)轉(zhuǎn)時,如果組成該齒輪系的齒輪中至少有一個齒輪的幾何軸線位置不固定,而繞著其他齒輪的幾何軸線旋轉(zhuǎn),即在該齒輪系中,至少具有一個作行星運(yùn)動的齒輪,則稱該齒輪傳動為行星齒輪傳動,即行星輪系。
2.2 行星機(jī)構(gòu)的類型及特點(diǎn)
行星齒輪傳動與普通齒輪傳動相比較,它具有許多獨(dú)特的優(yōu)點(diǎn)。行星齒輪傳動的主要特點(diǎn)如下:
(1)體積小,質(zhì)量小,結(jié)構(gòu)緊湊,承載能力大。一般,行星齒輪傳動的外廓尺寸和質(zhì)量約為普通齒輪傳動的(即在承受相同的載荷條件下)。
(2)傳動效率高。在傳動類型選擇恰當(dāng)、結(jié)構(gòu)布置合理的情況下,其效率值可達(dá)0.97~0,99。
(3)傳動比較大。可以實(shí)現(xiàn)運(yùn)動的合成與分解。只要適當(dāng)選擇行星齒輪傳動的類型及配齒方案,便可以用少數(shù)幾個齒輪而獲得很大的傳動比。在僅作為傳遞運(yùn)動的行星齒輪傳動中,其傳動比可達(dá)到幾千。應(yīng)該指出,行星齒輪傳動在其傳動比很大時,仍然可保持結(jié)構(gòu)緊湊、質(zhì)量小、體積小等許多優(yōu)點(diǎn)。
(4)運(yùn)動平穩(wěn)、抗沖擊和振動的能力較強(qiáng)。由于采用了數(shù)個結(jié)構(gòu)相同的行星輪,均勻地分布于中心輪的周圍,從而可使行星輪與轉(zhuǎn)臂的慣性力相互平衡。同時,也使參與嚙合的齒數(shù)增多,故行星齒輪傳動的運(yùn)動平穩(wěn),抵抗沖擊和振動的能力較強(qiáng),工作較可靠。
最常見的行星齒輪傳動機(jī)構(gòu)是NGW型行星傳動機(jī)構(gòu)。行星齒輪傳動的型式可按兩種方式劃分:按齒輪嚙合方式不同分有NGW、NW、NN、WW、NGWN和N等類型。按基本結(jié)構(gòu)的組成情況不同有2Z-X、3Z、Z-X-V、Z-X等類型。
行星齒輪傳動最顯著的特點(diǎn)是:在傳遞動力時它可進(jìn)行功率分流;同時,其輸入軸與輸出軸具有同軸性,即輸入軸與輸出軸均設(shè)置在同一主軸線上。所以,行星齒輪傳動現(xiàn)已被人們用來代替普通齒輪傳動,而作為各種機(jī)械傳動系統(tǒng)的中的減速機(jī)、增速器和變速裝置。尤其是對于那些要求體積小、質(zhì)量小、結(jié)構(gòu)緊湊和傳動效率高的航空發(fā)動機(jī)、起重運(yùn)輸、石油化工和兵器等的齒輪傳動裝置以及需要變速器的汽車和坦克等車輛的齒輪傳動裝置,行星齒輪傳動已得到了越來越廣泛的應(yīng)用,表2.1列出了常用行星齒輪傳動的型式及特點(diǎn):
表2.1 常用行星齒輪傳動的傳動類型及其特點(diǎn)
傳動
形式
簡圖
性能參數(shù)
特點(diǎn)
傳動比
效率
最大功率/kW
NGW(2Z-X
負(fù)號機(jī)構(gòu))
=1.13~13.7推薦2.8~9
0.97~0.99
不限
效率高,體積小,重量輕,結(jié)構(gòu)簡單,制造方便,傳遞公路范圍大,軸向尺寸小,可用于各個工作條件,在機(jī)械傳動中應(yīng)用最廣。單級傳動比范圍較小,耳機(jī)和三級傳動均廣泛應(yīng)用
NW(2Z-X負(fù)號機(jī)構(gòu))
=1~50推薦7~21
效率高,徑向尺寸比NGW型小,傳動比范圍較NGW型大,可用于各種工作條件。但雙聯(lián)行星齒輪制造、安裝較復(fù)雜,故||7時不宜采用
NN(2Z-X負(fù)號機(jī)構(gòu))
推薦值:
=8~30
效率較低,一般為0.7~0.8
40
傳動比打,效率較低,適用于短期工作傳動。當(dāng)行星架X從動時,傳動比||大于某一值后,機(jī)構(gòu)將發(fā)生自鎖
WW(2Z-X負(fù)號機(jī)構(gòu))
=1.2~數(shù)千
||=1.2~5時,效率可達(dá)0.9~0.7,>5以后.隨||增加徒降
20
傳動比范圍大,但外形尺寸及重量較大,效率很低,制造困難,一般不用與動力傳動。運(yùn)動精度低也不用于分度機(jī)構(gòu)。當(dāng)行星架X從動時,||從某一數(shù)值起會發(fā)生自鎖。常用作差速器;其傳動比取值為=1.8~3,最佳值為2,此時效率可達(dá)0.9
NGW(Ⅰ)型(3Z)
小功率傳動500;推薦:=20~100
0.8~0.9隨增加而下降
短期工作120,長期工作10
結(jié)構(gòu)緊湊,體積小,傳動比范圍大,但效率低于NGW型,工藝性差,適用于中小功率功率或短期工作。若中心輪A輸出,當(dāng)||大于某一數(shù)值時會發(fā)生自鎖
NGWN(Ⅱ)型(3Z)
=60~500推薦:=64~300
0.7~0.84隨增加而下降
短期工作120,長期工作10
結(jié)構(gòu)更緊湊,制造,安裝比上列Ⅰ型傳動方便。由于采用單齒圈行星輪,需角度變?yōu)椴拍軡M足同心條件。效率較低,宜用于短期工作。傳動自鎖情況同上
8
3 行星齒輪傳動設(shè)計
3.1 行星齒輪傳動類型
本設(shè)計為紡織傳動機(jī)械裝置設(shè)計所配用的行星齒輪減速器。已知輸出轉(zhuǎn)矩=4520Nm,傳動比=25.78,傳動比誤差?ii≤5%,且要求該行星齒輪傳動結(jié)構(gòu)緊湊,軸向尺寸較小和傳動效率高。
選取行星齒輪傳動的傳動類型和傳動簡圖
根據(jù)上述設(shè)計要求:結(jié)構(gòu)簡單緊湊、軸向尺寸小、傳動效率高、傳動比較大。再結(jié)合各傳動類型的特點(diǎn),選擇NGW型行星傳動完全可以滿足要求,由于NGW型行星傳動的傳動比較小,因此,此次設(shè)計中為彌補(bǔ)NGW型行星傳動傳動比小的缺點(diǎn),采用二級傳動。其傳動簡圖如圖3.1所示。
圖3.1 傳動示意圖
3.2 齒輪材料、熱處理工藝及制造工藝的選定
按典型搭配,太陽輪、行星輪材料為40Cr,表面滲碳淬火處理。
試驗(yàn)齒輪齒面許用接觸疲勞極限=1450MPa
試驗(yàn)齒輪齒根許用彎曲疲勞強(qiáng)度極限
太陽輪=400MPa 行星輪=400×0.7=280MPa
齒輪為漸開線直齒,最終加工為磨齒,精度為6級。
內(nèi)齒圈材料42CrMo,調(diào)質(zhì)處理。
試驗(yàn)齒輪齒面許用接觸疲勞極限σHmin=750MPa
試驗(yàn)齒輪齒根許用彎曲疲勞強(qiáng)度極限σFmin=280MPa
齒形的最重加工為插齒,精度為7級。
3.3 確定各主要參數(shù)
3.3.1 傳動比分配
低速級傳動比 =0.5+2~5=0.5×+2~5=4.54~7.54
高速級傳動比 =/=3.42~5.67
10
經(jīng)過合理的分析 取=5.6,取=4.6
3.3.2 行星輪數(shù)目np
取np=np=3
3.3.3 配齒計算
a. 高速級配齒 根據(jù)傳動比條件、同心條件和裝配條件聯(lián)立求解,得配齒計算式:
∶∶∶M=∶(-1)∶
將=5.6代人上式,結(jié)合考慮齒輪強(qiáng)度及傳動平穩(wěn)性等條件,取=17
則
=30
=79
b. 低速級配齒 同上,將=4.6帶入得,取=19得:
=25
=71
3.3.4 確定齒輪齒數(shù)m和中心距a
a. 高速級模數(shù)和中心距 根據(jù)下式確定小齒輪的分度圓直徑d,然后按幾何關(guān)系確定中心距a。
d= (3.1)
“+”用于外嚙合,“-”用于內(nèi)嚙合
式中 ——算式系數(shù),對于一般鋼制齒輪,直齒傳動=768;
——單對嚙合副中小齒輪名義轉(zhuǎn)矩N?m,
——使用系數(shù),由3得=1.25;
——計算接觸強(qiáng)度行星輪齒間載荷分布不均衡系數(shù);=1.1;
——綜合系數(shù),取=2.0硬齒面;
——齒寬系數(shù),暫取=0.5;
——試驗(yàn)齒輪的接觸疲勞強(qiáng)度(MPa),=1450MPa;
u——齒數(shù)比,u=:=1.76
模數(shù)
得d=51
m===3mm
計算中心矩:
47=67.37mm
取=68mm
則齒寬
b=d==25.5mm, 取26mm;
b. 低速級模數(shù)和中心距 根據(jù)下式確定小齒輪的分度圓直徑d,然后按幾何關(guān)系確定中心距a。
d= (3.2)
“+”用于外嚙合,“-”用于內(nèi)嚙合
式中 ——算式系數(shù),對于一般鋼制齒輪,直齒傳動=768;
——單對嚙合副中小齒輪名義轉(zhuǎn)矩N?m,
——使用系數(shù),由3得=1.25;
——計算接觸強(qiáng)度行星輪齒間載荷分布不均衡系數(shù);=1.1;
——綜合系數(shù),取=2.0硬齒面;
——齒寬系數(shù),暫取=0.5;
——試驗(yàn)齒輪的接觸疲勞強(qiáng)度(MPa),=1450MPa;
u——齒數(shù)比,u=:=25:19=1.32。
將各參數(shù)代入式
d= (3.3)
得
d=95mm
模數(shù)
m==95/19=5mm
則計算中心距
44=103.5
取a=104mm
則齒寬
b=d=0.5×5×19=47.5mm。
取b=48mm;
3.3.5 變位系數(shù)計算
a. 高速級變位系數(shù)算嚙合角cos=cos (3.4)
由于
所以 ==20°
變位系數(shù)和
計算得
太陽輪變?yōu)橄禂?shù)=0.549
行星輪變?yōu)橄禂?shù)=0.592
內(nèi)齒圈變?yōu)橄禂?shù)=0.592
b. 低速級變位系數(shù)計算
同理:
太陽輪變?yōu)橄禂?shù)=0.559
行星輪變?yōu)橄禂?shù)=0.589
內(nèi)齒圈變?yōu)橄禂?shù)=0.589
3.3.6 幾何尺寸計算
d=mz (3.5)
齒頂圓
齒根圓 ,“”號中正號用于外嚙合,負(fù)號用于內(nèi)嚙合。
基圓
齒頂高系數(shù):
太陽輪、行星輪ha*=1
內(nèi)齒輪ha*=0.8
頂隙系數(shù):c*=0.25
齒高變動系數(shù)?y=0(高度變位直齒輪傳動)
根據(jù)上述公式計算
a. 高速級 太陽輪
d=3×17mm=51mm
=51+2×3×(1+0.11)=57.66mm
=51-2×3×(1+0.25-0.11)=44.16mm
行星輪
d=3×30mm=90mm
=90+2×3×(1-0.11)mm=95.34mm
=90-2×3×(1+0.25+0.11)mm=81.84mm
嚙齒圈
d=3×79mm=231mm
=231-2×3×(0.8+0.11)mm=228.54mm
=231+2×3×(0.8+0.25-0.11)mm=236.64mm
b. 低速級 太陽輪
d=5×19mm=95mm
=95+2×5×(1+0.11)mm=106.1mm
=95-2×5×(1+0.25-0.11)mm=83.6mm
行星輪
d=5×25mm=125mm
=125+2×5×(1-0.11)mm=133.9mm
=125-2×5×(1+0.25+0.11)mm=116mm
嚙齒圈
d=5×71mm=345mm
=345-2×5×(0.8+0.11)mm=335.2mm
=345+2×5×(0.8+0.25-0.11)mm=356.6mm
3.3.7 嚙合計算
a. 高速級嚙合計算
(1) a-g傳動端面重合度
1) 頂圓齒形曲率半徑
(3.6)
太陽輪
==16.05mm
行星輪
==22.00mm
2) 端面嚙合長度
=±(asin) (3.7)
式中“±”號正號用于外嚙合,負(fù)號用于內(nèi)嚙合。
則
=16.05+22.00-68sin20°=14.79mm
3) 端面重合度
===1.67≥滿足要求
(2) g-b傳動端面重合度
計算過程同上
===174≥滿足要求
b. 低速級嚙合計算
(1) a-g傳動端面重合度
1) 頂圓齒形曲率半徑
太陽輪
==28.69mm
行星輪
==32.14mm
2) 端面嚙合長度ga
=+(—asin)=28.69+32.14—104sin=25.26mm
3) 端面重合度 ===17.68≥滿足要求
注:齒輪傳動的許用重合度=1.3~1.4
3.3.8 齒輪強(qiáng)度校核計算
高速級在設(shè)計時已經(jīng)保證了25%左右的工作裕度,因此,在此僅列出低速級的齒輪強(qiáng)度驗(yàn)算過程。
a. 齒面接觸疲勞強(qiáng)度校核計算
(1) 計算公式
計算齒面接觸應(yīng)力
(3.8)
計算齒面接觸應(yīng)力基本值
(3.9)
許用齒面接觸應(yīng)力
(3.10)
強(qiáng)度條件:應(yīng)滿足≤
(2) a-g傳動
(這里僅計算太陽輪的齒面接觸疲勞強(qiáng)度,行星輪的計算過程相同)
1) 確定式中各參數(shù)的值
1.使用系數(shù)=1.25;
2.動載系數(shù)
根據(jù)圓周速度=0.41m/s,查得:=1.04(6級精度);
3.齒向載荷分布系數(shù)
=1+(-1)
式中
——計算接觸疲勞強(qiáng)度時未經(jīng)跑合的齒向載荷分布系數(shù) =1.1(φd=0.5,np=3);
——計算接觸疲勞強(qiáng)度時的跑合系數(shù),=0.67
——與均載系數(shù)有關(guān)的系數(shù),=0.7;
則 =1+(1.15-1(×0.67×0.7=1.07
4.齒間載荷分布系數(shù)=1.0(6級精度,硬齒面直齒輪);
5.計算接觸強(qiáng)度的行星輪間載荷分配不均衡系數(shù)=1.1;
6.節(jié)點(diǎn)區(qū)域系數(shù)=2.5(β=0,x1+x2=0);
7.彈性系數(shù)=189.8M;
8.接觸強(qiáng)度計算用重合度系數(shù)=0.92
9.計算接觸強(qiáng)度的螺旋角系數(shù)Zβ
因?yàn)? =0
所以 ==1.0
10.圓周力
===7333N
11.齒數(shù)比u
u===1.76
12.壽命系數(shù)
根據(jù)應(yīng)力循環(huán)系數(shù)
=60=60=7.7次
得=0.95;
13.潤滑系數(shù)=1.03;
14.速度系數(shù)=0.95
15.粗糙度系數(shù)=0.90;
16.工作硬化系數(shù)=1.0;
17.尺寸系數(shù)=1.0(m=6);
18.最小安全系數(shù)=1.12(一般可靠傳動);
2) 計算
計算齒面接觸應(yīng)力基本值
(3.11)
=2.5×189.8×0.92×1.0
=704MPa
計算齒面接觸應(yīng)力
=704
=870.8MPa
許用齒面接觸應(yīng)力
=
=1083.1MPa
因≤
故太陽輪齒面接觸疲勞強(qiáng)度滿足設(shè)計要求。
(3) g-b傳動
(在此僅計算內(nèi)齒圈的齒面接觸疲勞強(qiáng)度)
1) 確定計算式中各參數(shù)的值
1.使用系數(shù)=1.25;
2.動載系數(shù)==1.05(7級精度);
3.齒向載荷分布系數(shù)=1.07
4.齒間載荷分布系數(shù)=1.0(7級精度,非硬齒面直齒輪);
5.計算接觸強(qiáng)度的行星輪間載荷分配不均衡系數(shù)=1.1;
6.節(jié)點(diǎn)區(qū)域系數(shù)=2.52;
7.彈性系數(shù)189.8MP;
8.接觸強(qiáng)度計算用重合度系數(shù)=0.87;
9.計算接觸強(qiáng)度的螺旋角系數(shù)
因?yàn)? β=0
所以 =cosβ=1.0
10.圓周力
===7333N
11.齒數(shù)比u
u===2.63
12.壽命系數(shù)
根據(jù)應(yīng)力循環(huán)系數(shù)
=60=60××3×4×320×24=2.41次
得:=0.94;
13.潤滑系數(shù)=1.04;
14.速度系數(shù)=0.90
15.粗糙度系數(shù)=0.80;
16.工作硬化系數(shù)=1.11;
17.尺寸系數(shù)=1.0(m=3);
18.最小安全系數(shù)=1.12(一般可靠傳動);
2) 計算
計算齒面接觸應(yīng)力基本值
(3.12)
=2.52×189.8×0.87×1.0
=591MPa
計算齒面接觸應(yīng)力
=591×
=720.6MPa
許用齒面接觸應(yīng)力
=×1.04×0.90×0.80×1.11×1.0
=1003.8MPa
因≤
故內(nèi)齒圈齒面接觸疲勞強(qiáng)度滿足設(shè)計要求。
b. 齒根彎曲疲勞強(qiáng)度校核計算
計算齒根彎曲應(yīng)力
(3.13)
計算齒根彎曲應(yīng)力基本值
(3.14)
許用彎曲應(yīng)力
(3.15)
強(qiáng)度條件:應(yīng)滿足
(這里僅列出太陽輪的計算過程,行星輪的計算過程與其相同)
1) 確定式中各參數(shù)值
1.使用系數(shù)=1.25;
2.動載系數(shù)=1.04(由前面計算接觸疲勞強(qiáng)度一節(jié)知);
3.齒向載荷分布系數(shù)
4.齒間載荷分布系數(shù)1.0(6級精度,硬齒面直齒輪);
5.彎曲強(qiáng)度計算用行星輪間載荷分布不均衡系數(shù)
=1+1.5(-1)=1+1.5×1..1-1=1.15
6.圓周力=7333N;
7.載荷作用齒頂時的齒形系數(shù)=2.70
8.載荷作用齒頂時的應(yīng)力修正系數(shù)=1.6
9.彎曲強(qiáng)度計算用重合度系數(shù)
0.25+=0.25+0.751.57=0.73
10.彎曲強(qiáng)度計算用螺旋角系數(shù)Yβ
因 β=0
故 =1°=1.0
11.試驗(yàn)齒輪彎曲疲勞強(qiáng)度極限=280MPa
12.試驗(yàn)齒輪應(yīng)力修正系數(shù)=2.0;
13.彎曲強(qiáng)度計算用壽命系數(shù)=0.9;
14.相對齒根圓角敏感系數(shù)=0.97;
15.齒根表面狀況系數(shù)=0.925;
16.尺寸系數(shù)=1.05-0.01m=1.05-0.01×6=0.99
17.彎曲強(qiáng)度計算用最小安全系數(shù)
2) 計算
計算齒根彎曲應(yīng)力基本值
=×2.7×1.6×0.73×1.0
=76MPa
計算齒根彎曲應(yīng)力
=76×1.25×1.04×1.08×1.0×1.15
=110MPa
許用彎曲應(yīng)力
=×0.97×0.925×0.99
=358.2MPa
因
故太陽輪的齒根彎曲疲勞強(qiáng)度滿足設(shè)計要求。
(3) g-b傳動
(這里僅列出內(nèi)齒圈的彎曲疲勞強(qiáng)度計算過程)
1) 確定式中各參數(shù)的值
1.使用系數(shù)=1.25;
2.動載系數(shù)=1.05
3.齒向載荷分布系數(shù)=1.04
4.齒間載荷分布系數(shù)=1.0(7級精度,非硬齒面直齒輪);
5.彎曲強(qiáng)度計算用行星輪間載荷分布不均衡系數(shù)=1.15
6.圓周力=7333N;
7.載荷作用齒頂時的齒形系數(shù)=2.053;
8.載荷作用齒頂時的應(yīng)力修正系數(shù)=2.65;
9.彎曲強(qiáng)度計算用重合度系數(shù)
=0.25+0.75εα=0.25+0.751.75=0.68
10.彎曲強(qiáng)度計算用螺旋角系數(shù)
因 β=0
故 =1°=1.0
11.試驗(yàn)齒輪彎曲疲勞強(qiáng)度極限=280MPa;
12.試驗(yàn)齒輪應(yīng)力修正系數(shù)=2.0;
13.彎曲強(qiáng)度計算用壽命系數(shù)=0.95;
14.相對齒根圓角敏感系數(shù)=1.06;
15.齒根表面狀況系數(shù)=0.925;
16.尺寸系數(shù)=0.994
17.彎曲強(qiáng)度計算用最小安全系數(shù)=1.25(一般可靠傳動)
2) 計算
計算齒根彎曲應(yīng)力基本值
=×2.053×2.65×0.68×1.0
=109.6MPa
計算齒根彎曲應(yīng)力
=109.6×1.25×1.05×1.04×1.0×1.15
=171.1MPa
許用彎曲應(yīng)力
=×1.06×0.925×0.994
=414.8MPa
因
故內(nèi)齒圈的齒根彎曲疲勞強(qiáng)度滿足設(shè)計要求。
3.3.9齒輪結(jié)構(gòu)設(shè)計
太陽輪結(jié)構(gòu)設(shè)計 首先按下式估算太陽輪軸的軸徑(軸的材料用40Cr鋼)
(3.16)
(1) 高速級太陽輪軸軸徑 取 =115
軸傳遞的功率P=19.5Kw;
軸的轉(zhuǎn)速 n=1000r/min;
代入得=30.9mm
(2) 低速級太陽輪軸軸徑 取=115;
軸傳遞的功率p=19kw;
軸的轉(zhuǎn)速 n==179r/m;
代入得=54.45mm
由于160,故做成實(shí)心結(jié)構(gòu)齒輪
b. 行星輪結(jié)構(gòu)設(shè)計 低速級行星輪做成中空的齒輪,以便在內(nèi)孔中裝置行星輪軸及軸承,為了減少行星輪間的尺寸差,可將同一傳動中的行星輪成組一次加工,加工中用齒輪端面做軸向定位。
軸承裝在行星輪內(nèi),為增大軸承間距,減小行星輪傾斜,將彈簧擋圈裝在軸承內(nèi)側(cè),此法存在的一個缺點(diǎn)是拆卸軸承比較復(fù)雜。
高速級因?yàn)閭鲃颖容^大故將軸承設(shè)計在外邊。
c. 內(nèi)齒圈結(jié)構(gòu)設(shè)計 采用螺釘固定在機(jī)體上,但要滿足與機(jī)體有精確的定位配合。
內(nèi)齒圈做成薄壁帶孔結(jié)構(gòu),以增加柔性,起緩沖和彈性均載作用。
3.3.10 傳動效率
(3.17)
(3.18)
(3.19)
式中 f——系數(shù),與兩齒輪齒頂高有關(guān),因,所以取;
u——嚙合接觸摩擦系數(shù),,?。?
代入得
高速級傳動效率
低速級傳動效率
總傳動比
25
4 其他主要零部件設(shè)計
4.1 高速級行星輪軸及其軸承設(shè)計
4.1.1 行星輪軸直徑計算和軸承的選取
行星輪軸的直徑可按內(nèi)齒圈的分度圓直徑與比例系數(shù)估算:
查表得=0.11,則
0.11=24.07mm
根據(jù)工業(yè)實(shí)踐,行星輪內(nèi)孔設(shè)置的軸承直徑范圍如下:
軸承內(nèi)孔直徑行星輪分度圓直徑;
軸承外圈直徑0.7行星輪分度圓直徑;
即
軸承內(nèi)孔直徑
軸承外圈直徑
結(jié)合以上條件,查《機(jī)械設(shè)計課程設(shè)計》表15-2(GB/T283-1994)初選=25mm,D=47mm。軸承代號為6005?;绢~定動載荷KN。
4.1.2 軸承壽命計算
查《機(jī)械設(shè)計手冊》得紡織機(jī)械的預(yù)期計算壽命=4000060000
軸承基本額定壽命=
式中 C——基本額定動載荷18.5(kN),;
n——軸承轉(zhuǎn)速(r/min),=77.58r/min;
p——軸承所受載荷(kN),p=3.1kN;
——指數(shù)。
代入得
=45652h
由于滿足=4000060000范圍內(nèi)
故此軸承能滿足使用壽命要求。
4.2 低速級行星輪軸及其軸承設(shè)計
4.2.1 行星輪軸直徑計算和軸承的選取
軸承內(nèi)孔直徑
軸承外圈直徑
結(jié)合以上條件,查《機(jī)械設(shè)計課程設(shè)計》表15-2(GB/T283-1994)初選=40mm,D=68mm。軸承代號為6008,基本額定動載荷KN。
4.2.2 軸承壽命計算
查[得紡織機(jī)械的預(yù)期計算壽命=4000060000
軸承基本額定壽命=
式中
C——基本額定動載荷35.8(kN),;
n——軸承轉(zhuǎn)速(r/min),=456.3r/min;
p——軸承所受載荷(kN),p=2.9kN;
——指數(shù)。
代入得
=68715h
由于滿足=4000060000范圍內(nèi)
故此軸承能滿足使用壽命要求。
4.3 低速軸、中間軸、高速軸及其軸承設(shè)計
4.3.1 輸入軸設(shè)計
a. 初算軸的最小直徑由下式
(4.2)
初步估算軸的最小直徑,選取軸材料為40Cr鋼,調(diào)質(zhì)處理。根據(jù)表4.1查得。查表取=126,得
P——軸傳遞的功率(kw),p=19.61kw;
n——軸的轉(zhuǎn)速(r/min),n=1000r/min;
表4.1 軸常用幾種材料的及值
軸的材料
Q235-A、20
Q275、
35(1Cr18Ni9Ti)
45
40Cr、35SiMn
38SiMnMo
/
15~25
20~35
25~45
35~55
149~126
135~112
126~103
112~97
輸入軸的最小直徑安裝,該截面處開有鍵槽,軸徑增大5%~7%。
故
其實(shí)際尺寸將在選擇軸承時最后確定。
b. 選擇輸入軸軸承 根據(jù)估算所得直徑,輪彀寬及安裝情況等條件,軸的結(jié)構(gòu)尺寸可進(jìn)行草圖設(shè)計。該軸中間一段對稱安裝一對角接觸軸承軸承7208AC型,其尺寸為,。
軸承的壽命計算 其參數(shù)為
kN
收藏
編號:43677783
類型:共享資源
大小:2.53MB
格式:RAR
上傳時間:2021-12-03
40
積分
- 關(guān) 鍵 詞:
-
NGW
行星減速器
設(shè)計
- 資源描述:
-
NGW行星減速器的設(shè)計,NGW,行星減速器,設(shè)計
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。