九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOCX文檔下載  

2018-2019版高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式復(fù)習(xí)課學(xué)案 新人教A版選修4-5.docx

  • 資源ID:4604364       資源大?。?span id="24d9guoke414" class="font-tahoma">156.08KB        全文頁數(shù):7頁
  • 資源格式: DOCX        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

2018-2019版高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式復(fù)習(xí)課學(xué)案 新人教A版選修4-5.docx

第四講 數(shù)學(xué)歸納法證明不等式 復(fù)習(xí)課 學(xué)習(xí)目標(biāo) 1.梳理數(shù)學(xué)歸納法的思想方法,初步形成“歸納—猜想—證明”的思維模式.2.熟練掌握用數(shù)學(xué)歸納法證明不等式、等式等問題的證明步驟. 1.?dāng)?shù)學(xué)歸納法是用有限個步驟,就能夠處理完無限多個對象的方法. 2.一般地,當(dāng)要證明一個命題對于不小于某正整數(shù)n0的所有正整數(shù)n都成立時,可以用以下兩個步驟: (1)證明當(dāng)n=n0時命題成立. (2)假設(shè)當(dāng)n=k(k∈N+且k≥n0)時命題成立,證明當(dāng)n=k+1時命題也成立.完成以上兩個步驟,就可以斷定命題對不小于n0的所有正整數(shù)都成立,這種證明方法稱為數(shù)學(xué)歸納法. 3.在數(shù)學(xué)歸納法的兩個步驟中,第一步是奠基,第二步是假設(shè)與遞推,遞推是實現(xiàn)從有限到無限飛躍的關(guān)鍵. 4.用數(shù)學(xué)歸納法證明不等式,關(guān)鍵是在假設(shè)當(dāng)n=k(k∈N+,k≥n0)時命題成立的條件下,推出當(dāng)n=k+1時命題成立這一步,為完成這步證明,不僅要正確使用歸納假設(shè),還要用到分析法,綜合法,放縮法等相關(guān)知識和方法. 類型一 歸納—猜想—證明 例1 已知數(shù)列{an}的第一項a1=5且Sn-1=an(n≥2,n∈N+). (1)求a2,a3,a4,并由此猜想an的表達(dá)式; (2)用數(shù)學(xué)歸納法證明{an}的通項公式. (1)解 a2=S1=a1=5,a3=S2=a1+a2=10, a4=S3=a1+a2+a3=5+5+10=20, 猜想an= (2)證明?、佼?dāng)n=2時,a2=522-2=5,公式成立. ②假設(shè)當(dāng)n=k時成立, 即ak=52k-2(k≥2,k∈N+), 當(dāng)n=k+1時,由已知條件和假設(shè)有 ak+1=Sk=a1+a2+…+ak =5+5+10+…+52k-2 =5+=52k-1. 故當(dāng)n=k+1時公式也成立. 由①②可知,對n≥2,n∈N+有an=52n-2. 所以數(shù)列{an}的通項an= 反思與感悟 利用數(shù)學(xué)歸納法解決探索型不等式的思路是:觀察——歸納——猜想——證明.即先通過觀察部分項的特點,進(jìn)行歸納,判斷并猜想出一般結(jié)論,然后用數(shù)學(xué)歸納法進(jìn)行證明. 跟蹤訓(xùn)練1 設(shè)f(n)>0(n∈N+),對任意自然數(shù)n1和n2總有f(n1+n2)=f(n1)f(n2),又f(2)=4. (1)求f(1),f(3)的值; (2)猜想f(n)的表達(dá)式,并證明你的猜想. 解 (1)由于對任意自然數(shù)n1和n2, 總有f(n1+n2)=f(n1)f(n2). 取n1=n2=1,得f(2)=f(1)f(1),即f2(1)=4. ∵f(n)>0(n∈N+), ∴f(1)=2. 取n1=1,n2=2,得f(3)=23. (2)由f(1)=21,f(2)=4=22,f(3)=23, 猜想f(n)=2n. 證明:①當(dāng)n=1時,f(1)=2成立. ②假設(shè)n=k(k≥1,k∈N+)時,f(k)=2k成立. 當(dāng)n=k+1時,f(k+1)=f(k)f(1)=2k2=2k+1, 所以當(dāng)n=k+1時,猜想也成立. 由①②知猜想正確,即f(n)=2n,n∈N+. 類型二 用數(shù)學(xué)歸納法證明等式或不等式 例2 求證tanαtan2α+tan2αtan3α+…+tan(n-1)αtannα=-n(n≥2,n∈N+). 證明 (1)當(dāng)n=2時, 左邊=tanαtan2α, 右邊=-2=-2 =-2 == =tanαtan2α,等式成立. (2)假設(shè)當(dāng)n=k(k≥2,k∈N+)時等式成立,即 tanαtan2α+tan2αtan3α+…+tan(k-1)αtankα=-k. 當(dāng)n=k+1時, tanαtan2α+tan2αtan3α+…+tan(k-1)αtankα+tankαtan(k+1)α =-k+tankαtan(k+1)α =-k =[1+tan(k+1)αtan α]-k =[tan(k+1)α-tan α]-k =-(k+1), 所以當(dāng)n=k+1時,等式也成立. 由(1)和(2)知,當(dāng)n≥2,n∈N+時等式恒成立. 反思與感悟 歸納法是證明有關(guān)正整數(shù)n的命題的一種方法,應(yīng)用廣泛.用數(shù)學(xué)歸納法證明一個命題必須分兩個步驟:(1)論證命題的起始正確性,是歸納的基礎(chǔ);(2)推證命題正確的可傳遞性,是遞推的依據(jù).兩步缺一不可,證明步驟與格式的規(guī)范是數(shù)學(xué)歸納法的一個特征. 跟蹤訓(xùn)練2 用數(shù)學(xué)歸納法證明:當(dāng)n∈N+時,(2cosx-1)(2cos2x-1)…(2cos2n-1x-1)=. 證明 (1)當(dāng)n=1時,左邊=2cosx-1, 右邊===2cosx-1, 即左邊=右邊,∴命題成立. (2)假設(shè)當(dāng)n=k(k≥1,k∈N+)時,命題成立, 即(2cosx-1)(2cos2x-1)…(2cos2k-1x-1)=. 當(dāng)n=k+1時, 左邊=(2cosx-1)(2cos2x-1)…(2cos2k-1x-1)(2cos2kx-1) =(2cos2kx-1) = =. ∴當(dāng)n=k+1時命題成立. 由(1)(2)可知,當(dāng)n∈N+時命題成立. 例3 用數(shù)學(xué)歸納法證明+++…+>,其中n≥2,n∈N+. 證明 (1)當(dāng)n=2時,左邊=,右邊=0,結(jié)論成立; (2)假設(shè)當(dāng)n=k(k≥2,k∈N+)時,結(jié)論成立, 即+++…+>, 則當(dāng)n=k+1時, 左邊=+++…+++…+>++…+>+=, 即當(dāng)n=k+1時,結(jié)論成立. 由(1)(2)可知,+++…+>,n≥2,n∈N+. 反思與感悟 用數(shù)學(xué)歸納法證明不等式,除了注意數(shù)學(xué)歸納法規(guī)范的格式外,還要注意靈活利用問題的其他條件及相關(guān)知識. 跟蹤訓(xùn)練3 求證:++…+>(n≥2,n∈N+). 證明 (1)當(dāng)n=2時, 左邊=+++>,不等式成立. (2)假設(shè)當(dāng)n=k(k≥2,k∈N+)時,命題成立, 即++…+>. 當(dāng)n=k+1時, ++…++++ =++…++ >+ >+=. 所以當(dāng)n=k+1時,不等式也成立. 由(1)(2)可知,原不等式對一切n≥2,n∈N+均成立. 類型三 用數(shù)學(xué)歸納法證明整除問題 例4 用數(shù)學(xué)歸納法證明:n(n+1)(2n+1)能被6整除. 證明 (1)當(dāng)n=1時,123顯然能被6整除. (2)假設(shè)當(dāng)n=k(k≥1,k∈N+)時,命題成立, 即k(k+1)(2k+1)=2k3+3k2+k能被6整除. 當(dāng)n=k+1時, (k+1)(k+2)(2k+3)=2k3+3k2+k+6(k2+2k+1). 因為2k3+3k2+k,6(k2+2k+1)都能被6整除, 所以2k3+3k2+k+6(k2+2k+1)能被6整除, 即當(dāng)n=k+1時命題成立. 由(1)和(2)知,對任意n∈N+原命題成立. 反思與感悟 用數(shù)學(xué)歸納法證明整除問題的關(guān)鍵點 (1)用數(shù)學(xué)歸納法證明整除問題的關(guān)鍵是利用增項、減項、拆項、并項、因式分解等恒等變形的方法去湊假設(shè)、湊結(jié)論,從而利用歸納假設(shè)使問題獲證. (2)與n有關(guān)的整除問題一般都用數(shù)學(xué)歸納法證明,其中關(guān)鍵問題是從n=k+1時的表達(dá)式中分解出n=k時的表達(dá)式與一個含除式的因式或幾個含除式的因式. 跟蹤訓(xùn)練4 設(shè)x∈N+,n∈N+, 求證:xn+2+(x+1)2n+1能被x2+x+1整除. 證明 (1)當(dāng)n=1時,x3+(x+1)3=[x+(x+1)][x2-x(x+1)+(x+1)2]=(2x+1)(x2+x+1),結(jié)論成立. (2)假設(shè)當(dāng)n=k(k≥1,k∈N+)時,結(jié)論成立,即xk+2+(x+1)2k+1能被x2+x+1整除, 那么當(dāng)n=k+1時, x(k+1)+2+(x+1)2(k+1)+1 =xxk+2+(x+1)2(x+1)2k+1 =x[xk+2+(x+1)2k+1]+(x+1)2(x+1)2k+1-x(x+1)2k+1 =x[xk+2+(x+1)2k+1]+(x2+x+1)(x+1)2k+1. 由假設(shè)知,xk+2+(x+1)2k+1及x2+x+1均能被x2+x+1整除,故x(k+1)+2+(x+1)2(k+1)+1能被x2+x+1整除,即當(dāng)n=k+1時,結(jié)論也成立. 由(1)(2)知,原結(jié)論成立. 1.某同學(xué)回答“用數(shù)學(xué)歸納法證明<n+1(n∈N+)”的過程如下: 證明:(1)當(dāng)n=1時,顯然命題是正確的; (2)假設(shè)當(dāng)n=k(k≥1,k∈N+)時,有<k+1,那么當(dāng)n=k+1時, =<=(k+1)+1,所以當(dāng)n=k+1時,命題成立.由(1)(2)可知對于任意n∈N+命題成立.以上證法是錯誤的,錯誤在于(  ) A.從k到k+1的推理過程沒有使用歸納假設(shè) B.歸納假設(shè)的寫法不正確 C.從k到k+1的推理不嚴(yán)密 D.當(dāng)n=1時,驗證過程不具體 答案 A 2.設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足:“當(dāng)f(k)≥k2成立時,總可推出f(k+1)≥(k+1)2成立”,那么,下列命題總成立的是(  ) A.若f(3)≥9成立,則當(dāng)k≥1時,均有f(k)≥k2成立 B.若f(5)≥25成立,則當(dāng)k≤5時,均有f(k)≥k2成立 C.若f(7)<49成立,則當(dāng)k≥8時,均有f(k)<k2成立 D.若f(4)=25成立,則當(dāng)k≥4時,均有f(k)≥k2成立 答案 D 解析 對于D,∵f(4)=25≥42, ∴當(dāng)k≥4時,均有f(k)≥k2. 3.用數(shù)學(xué)歸納法證明1+2+3+4+…+n2=(n∈N+),則當(dāng)n=k+1時,左端應(yīng)為在當(dāng)n=k時的基礎(chǔ)上加上________________. 答案 (k2+1)+…+(k+1)2 解析 當(dāng)n=k+1時,左端=1+2+3+…+k2+(k2+1)+…+(k+1)2.所以增加了(k2+1)+…+(k+1)2. 4.已知數(shù)列{an}的各項都是正數(shù),且滿足:a0=1,an+1=an(4-an)(n∈N).證明:an<an+1<2(n∈N). 證明 (1)當(dāng)n=0時,a0=1,a1=a0(4-a0)=, 所以a0<a1<2,命題正確. (2)假設(shè)當(dāng)n=k(k≥1,k∈N+)時命題成立,即ak-1<ak<2. 則當(dāng)n=k+1時, ak-ak+1=ak-1(4-ak-1)-ak(4-ak) =2(ak-1-ak)-(ak-1-ak)(ak-1+ak) =(ak-1-ak)(4-ak-1-ak). 而ak-1-ak<0,4-ak-1-ak>0,所以ak-ak+1<0. 又ak+1=ak(4-ak)=[4-(ak-2)2]<2. 所以當(dāng)n=k+1時命題正確. 由(1)(2)可知,對一切n∈N,有an<an+1<2. 1.在推證“n=k+1”命題也成立時,必須把歸納假設(shè)“n=k”時的命題作為必備條件使用上,否則不是數(shù)學(xué)歸納法.對項數(shù)估算的錯誤,特別是尋找n=k與n=k+1的關(guān)系時,弄錯項數(shù)發(fā)生的變化是常見錯誤. 2.用數(shù)學(xué)歸納法證明的問題通常與數(shù)列的遞推公式、通項公式有關(guān),有時要證明的等式或不等式是直接給出,有時是根據(jù)條件從前幾項入手,通過觀察、歸納,猜想出一個等式或不等式,然后再用數(shù)學(xué)歸納法證明. 3.用數(shù)學(xué)歸納法證明與自然數(shù)有關(guān)的不等式以及數(shù)列有關(guān)的命題是考查的重點,主要考查用數(shù)學(xué)歸納法證明數(shù)學(xué)命題的能力,同時考查分析問題、解決問題的能力. 一、選擇題 1.若命題A(n)(n∈N+)在n=k(k∈N+)時命題成立,則有n=k+1時命題成立.現(xiàn)知命題對n=n0(n0∈N+)時命題成立,則有(  ) A.命題對所有正整數(shù)都成立 B.命題對小于n0的正整數(shù)不成立,對大于或等于n0的正整數(shù)都成立 C.命題對小于n0的正整數(shù)成立與否不能確定,對大于或等于n0的正整數(shù)都成立 D.以上說法都不正確 答案 C 解析 由已知得n=n0(n0∈N+)時命題成立,則有n=n0+1時命題成立;在n=n0+1時命題成立的前提下,又可推得n=(n0+1)+1時命題也成立,依此類推,可知選C. 2.上一個n層的臺階,若每次可上一層或兩層,設(shè)所有不同上法的總數(shù)為f(n),則下列猜想正確的是(  ) A.f(n)=n B.f(n)=f(n)+f(n-2) C.f(n)=f(n)f(n-2) D.f(n)= 答案 D 解析 當(dāng)n≥3時,f(n)分兩類,第一類,從第n-1層再上一層,有f(n-1)種方法;第二類從第n-2層再一次上兩層,有f(n-2)種方法,所以f(n)=f(n-1)+f(n-2)(n≥3). 3.?dāng)?shù)列{an}的前n項和Sn=n2an(n≥2),而a1=1,通過計算a2,a3,a4,猜想an等于(  ) A. B. C. D. 答案 B 解析 由a2=S2-S1=4a2-1,得a2==, 由a3=S3-S2=9a3-4a2,得a3=a2==, 由a4=S4-S3=16a4-9a3,得a4=a3==, 猜想an=. 4.用數(shù)學(xué)歸納法證明不等式1+++…+>(n∈N+)成立,其初始值至少應(yīng)取(  ) A.7B.8C.9D.10 答案 B 解析 左邊=1+++…+= =2-,代入驗證可知n的最小值是8. 5.用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n12(2n-1)(n∈N+)”時,從“n=k到n=k+1”時,左邊應(yīng)增加的式子是(  ) A.2k+1 B.2k+3 C.2(2k+1) D.2(2k+3) 答案 C 解析 當(dāng)n=k+1時, (k+2)(k+3)…(k+k)(2k+1)(2k+2) =(k+1)(k+2)…(k+k)2(2k+1), ∴2(2k+1)是從n=k到n=k+1時,左邊應(yīng)增加的式子. 6.用數(shù)學(xué)歸納法證明“n3+(n+1)3+(n+2)3(n∈N+)能被9整除”,要利用歸納假設(shè)證明當(dāng)n=k+1時的情況,只需展開(  ) A.(k+3)3 B.(k+2)3 C.(k+1)3 D.(k+1)3+(k+2)3 答案 A 解析 假設(shè)當(dāng)n=k時,原式能被9整除, 即k3+(k+1)3+(k+2)3能被9整除. 當(dāng)n=k+1時,(k+1)3+(k+2)3+(k+3)3為了能用上面的歸納假設(shè),只需將(k+3)3展開,讓其出現(xiàn)k3即可. 二、填空題 7.設(shè)f(n)=…,用數(shù)學(xué)歸納法證明f(n)≥3,在假設(shè)當(dāng)n=k時成立后,f(k+1)與f(k)的關(guān)系是f(k+1)=f(k)________________. 答案  解析 f(k)=…, f(k+1)=… , ∴f(k+1)=f(k). 8.設(shè)數(shù)列{an}滿足a1=2,an+1=2an+2,用數(shù)學(xué)歸納法證明an=42n-1-2的第二步中,設(shè)當(dāng)n=k(k≥1,k∈N+)時結(jié)論成立,即ak=42k-1-2,那么當(dāng)n=k+1時,應(yīng)證明等式____________成立. 答案 ak+1=42(k+1)-1-2 9.設(shè)平面內(nèi)有n條直線(n≥3),其中有且僅有兩條直線互相平行,任意三條直線不過同一點.若用f(n)表示這n條直線交點的個數(shù),則f(4)=________;當(dāng)n>4時,f(n)=________(用含n的式子表示). 答案 5 (n-2)(n+1) 解析 f(3)=2,f(4)=5,f(5)=9,f(6)=14,每增加一條直線,交點增加的個數(shù)等于原來直線的條數(shù). ∴f(4)-f(3)=3,f(5)-f(4)=4,f(6)-f(5)=5,…,f(n)-f(n-1)=n-1. 累加,得f(n)-f(3)=3+4+…+(n-1) =(n-3). ∴f(n)=(n-2)(n+1). 10.用數(shù)學(xué)歸納法證明“n3+5n能被6整除”的過程中,當(dāng)n=k+1時,對式子(k+1)3+5(k+1)應(yīng)變形為________________________. 答案 k3+5k+3k(k+1)+6 解析 (k+1)3+5(k+1)=k3+3k2+3k+1+5k+5 =k3+5k+3k2+3k+6 =k3+5k+3k(k+1)+6. 三、解答題 11.已知f(n)=(2n+7)3n+9(n∈N+),用數(shù)學(xué)歸納法證明f(n)能被36整除. 證明 (1)當(dāng)n=1時,f(1)=(2+7)3+9=36,能被36整除. (2)假設(shè)當(dāng)n=k(k∈N+,k≥1)時,f(k)=(2k+7)3k+9能被36整除, 則當(dāng)n=k+1時,f(k+1)=[2(k+1)+7]3k+1+9=(2k+7)3k+1+23k+1+9=(2k+7)3k3+23k+1+9=3[(2k+7)3k+9]-27+23k+1+9=3[(2k+7)3k+9]+18(3k-1-1). 由于3k-1-1是2的倍數(shù),故18(3k-1-1)能被36整除,即當(dāng)n=k+1時,f(k+1)也能被36整除. 根據(jù)(1)和(2)可知,對一切正整數(shù)n,都有f(n)=(2n+7)3n+9能被36整除. 12.是否存在常數(shù)a,b,c,使得等式122+232+342+…+n(n+1)2=(an2+bn+c)對一切正整數(shù)成立?并證明你的結(jié)論. 解 假設(shè)存在a,b,c,使題中等式對一切正整數(shù)成立, 則當(dāng)n=1,2,3時,上式顯然成立, 可得 解得a=3,b=11,c=10. 下面用數(shù)學(xué)歸納法證明等式122+232+342+…+n(n+1)2=(3n2+11n+10)對一切正整數(shù)均成立. (1)當(dāng)n=1時,命題顯然成立. (2)假設(shè)當(dāng)n=k(k≥1,k∈N+)時,命題成立, 即122+232+342+…+k(k+1)2 =(3k2+11k+10), 則當(dāng)n=k+1時,有 122+232+…+k(k+1)2+(k+1)(k+2)2 =(3k2+11k+10)+(k+1)(k+2)2 =(k+2)(3k+5)+(k+1)(k+2)2 =(3k2+5k+12k+24) =[3(k+1)2+11(k+1)+10]. 即當(dāng)n=k+1時,等式也成立. 由(1)(2)可知,對任何正整數(shù)n,等式都成立. 13.設(shè)Pn=(1+x)n,Qn=1+nx+x2,n∈N+,x∈(-1,+∞),試比較Pn與Qn的大小,并加以證明. 解 (1)當(dāng)n=1,2時,Pn=Qn. (2)當(dāng)n≥3時,(以下再對x進(jìn)行分類). ①若x∈(0,+∞),顯然有Pn>Qn; ②若x=0,則Pn=Qn; ③若x∈(-1,0), 則P3-Q3=x3<0,所以P3<Q3. P4-Q4=4x3+x4=x3(4+x)<0,所以P4<Q4. 假設(shè)Pk<Qk(k≥3), 則Pk+1=(1+x)Pk<(1+x)Qk=Qk+xQk =1+kx++x+kx2+ =1+(k+1)x+x2+x3 =Qk+1+x3<Qk+1, 即當(dāng)n=k+1時,不等式成立. 所以當(dāng)n≥3,且x∈(-1,0)時,Pn<Qn. 四、探究與拓展 14.已知f(n)=1+++…+(n∈N+),g(n)= 2(-1)(n∈N+). (1)當(dāng)n=1,2,3時,分別比較f(n)與g(n)的大小(直接給出結(jié)論); (2)由(1)猜想f(n)與g(n)的大小關(guān)系,并證明你的結(jié)論. 解 (1)f(1)>g(1),f(2)>g(2),f(3)>g(3). (2)當(dāng)n=1時,f(1)>g(1); 當(dāng)n=2時,f(2)>g(2); 當(dāng)n=3時,f(3)>g(3). 猜想:f(n)>g(n)(n∈N+),即1+++…+> 2(-1)(n∈N+). 下面用數(shù)學(xué)歸納法證明. ①當(dāng)n=1時,f(1)=1,g(1)=2(-1),f(1)>g(1), 不等式成立. ②假設(shè)當(dāng)n=k(k≥1,k∈N+)時,不等式成立,即1+++…+>2(-1). 則當(dāng)n=k+1時,f(k+1)=1+++…++>2(-1)+=2+-2, g(k+1)=2(-1)=2-2, 所以只需證明2+>2, 即證2(k+1)+1=2k+3>2, 即證(2k+3)2>4(k+2)(k+1), 即證4k2+12k+9>4k2+12k+8,此式顯然成立. 所以,當(dāng)n=k+1時不等式也成立. 綜上可知,對n∈N+,不等式都成立, 即1+++…+>2(-1)(n∈N+)成立.

注意事項

本文(2018-2019版高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式復(fù)習(xí)課學(xué)案 新人教A版選修4-5.docx)為本站會員(xt****7)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!