助行機器人定位關鍵技術研究
《助行機器人定位關鍵技術研究》由會員分享,可在線閱讀,更多相關《助行機器人定位關鍵技術研究(152頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 申請上海交通大學博士學位論文 助行機器人定位關鍵技術研究 專 業(yè):機械電子工程 博士生:朱笑笑 導 師:曹其新教授 上海交通大學機械與動力工程學院 2014年 2月 Ph.D. Dissertation Submitted to Shanghai Jiao Tong University Research on Key Technologies of Localization Method for Walking Assistant Robot Specialty: Mechatronics Engineering Aut
2、hor: Zhu Xiaoxiao Advisor: Prof. Cao Qixin School of Mechanical and Power Engineering Shanghai Jiao Tong University February,2014 學位論文版權使用授權書 本學位論文作者完全了解學校有關保留、使用學位論文的規(guī)定,同意 學校保留并向國家有關部門或機構送交論文的復印件和電子版,允許論文 被查閱和借閱。本人授權上海交通大學可以將本學位論文的全部或部分內(nèi) 容編入有關數(shù)據(jù)庫進行檢索,可以采用影印、縮印或掃描等復制手段保存 和匯編本
3、學位論文。 (請在以上方框內(nèi)打“√”) 本人鄭重聲明:所呈交的學位論文,是本人在導師的指導下,獨立進 行研究工作所取得的成果。除文中已經(jīng)注明引用的內(nèi)容外,本論文不包含 任何其他個人或集體已經(jīng)發(fā)表或撰寫過的作品成果。對本文的研究做出重 要貢獻的個人和集體,均已在文中以明確方式標明。本人完全意識到本聲 明的法律結果由本人承擔。 摘要 助行機器人定位關鍵技術研究 摘要 助行機器人是一種可以輔助老人行走的特殊服務機器人,它的目標是代替?zhèn)? 統(tǒng)的助行器(如拐杖、助步架等)在保證老人行走安全的基礎上,大大提高其獨
4、 立生活能力及生活質(zhì)量。除了能夠提供基本的輔助行走功能,它還需具備多種智 能化功能,如用戶健康狀態(tài)監(jiān)控,語音交互,定位導航,用戶識別,用戶計劃提 醒,信息播報服務等等。定位系統(tǒng)作為助行機器人一個重要組件,是實現(xiàn)多項智 能化功能的一個基礎。本文針對助行機器人定位系統(tǒng)的幾項關鍵技術開展研究, 具體研究內(nèi)容如下。 (1)環(huán)境地圖是助行機器人自主定位導航的重要先驗知識,常用的 2D地圖 能夠滿足機器人自定位的需求,但由于存在高度方向的不確定性,在家居狹小空 間內(nèi)的自主導航應用中存在明顯不足。而傳統(tǒng)的 3D地圖創(chuàng)建方法一般需要使用 價格昂貴的激光傳感器,操作也較為復雜,不適合家
5、庭使用。本文對利用 RGB-D (顏色-深度)傳感器的 3D地圖創(chuàng)建方法進行研究,提出基于改進 KinectFusion 算法的地圖創(chuàng)建方法,使其可以較為方便對家庭環(huán)境進行創(chuàng)建。對 KinectFusion 算法進行兩個方面的改進,一方面提出使用環(huán)境中的邊線特征點匹配來提高其定 位魯棒性,另一方面在點云模型中預設一個地面點云來減少累積誤差提高精度。 并且提出了基于標志物的子地圖拼接方法,解決 KinectFusion算法只能創(chuàng)建小規(guī) 模地圖的問題。 (2 )助行機器人工作形式靈活,經(jīng)常需要在自主運行和被動控制之間切換, 同時其運行環(huán)境也會在室內(nèi)和室外變化。因此連續(xù)定位會
6、頻繁的中斷,這就要求 助行機器人具有較強的全局定位功能,可以快速地重新定位。本文對全局搜索定 位算法進行研究,提出利用旋轉(zhuǎn)不變量首先進行位置空間搜索得到可行的機器人 位置,然后在方向空間進行搜索得到機器人的朝向,對全局搜索定位方法進行降 維,這樣大大提升了全局定位的效率。 (3)傳統(tǒng)的 2D連續(xù)位置跟蹤方法較為成熟但是需要使用激光傳感器,對助 行機器人的成本控制不利。本文嘗試以 RGB-D傳感器來代替 2D激光傳感器進 I 上海交通大學博士學位論文 行連續(xù)定位,通過充分利用 RGB-D的 3D點云信息彌補其水平方向視野較小的 缺點。而傳統(tǒng)
7、的 3D點云配準定位算法,無法達到實時定位的需求,本文提出了 基于 3DLUT(Lookup Table)的 3D點云快速配準方法,該方法可以達到實時的 處理速度,同時具有較高的定位精度。 (4 )助行機器人的用戶定位功能是一項非常重要的功能,對提高助行機器人 的易用性起很大的作用。傳統(tǒng)的基于激光傳感器的用戶定位方法由于沒有用戶區(qū) 分的能力,所以在行人干擾較多的情況下無法正常工作;基于視覺的方法則因為 對光線變化,觀察角度等非常敏感,所以魯棒性不高。本文提出基于全向視覺及 紅外標志物識別的方法來定位用戶。通過調(diào)節(jié)相機曝光值,使得系統(tǒng)在室內(nèi)室外 均能穩(wěn)定的識別用戶。在對全向視覺系
8、統(tǒng)進行標定時,利用鏡面基底圓輪廓的成 像來計算鏡面位姿確定內(nèi)部參數(shù)的方法,并提出了使用鏡面中心點來確定鏡面位 姿兩組可能解中的真實解,同時提出了利用一種具有單一解的 Non-SVP(非單 一中心)P3P解法來確定全向視覺系統(tǒng)的外部參數(shù)的方法。該標定方法簡單快速, 對標定物要求低,并具有較高的精度。 (5)根據(jù)本文提出的幾項關鍵技術解決方案,開發(fā)搭建了 WalkMateIII型助 行機器人軟硬件系統(tǒng)。為了方便系統(tǒng)軟件的開發(fā)集成,提高系統(tǒng)的結構清晰度, 本文利用基于模塊化的方法來搭建助行機器人的軟件系統(tǒng)。最后通過實現(xiàn)兩個典 型任務:開機用戶查找,用戶跟蹤的,對整套系統(tǒng)
9、的可行性進行驗證。 國內(nèi)助行機器人的研究剛剛起步,而助行機器人由于其特殊的工作方法和一 般的移動服務機器人有多方面的差別,還有很多問題有待解決。本文的研究目的 是:通過對助行機器人的定位系統(tǒng)的研究,解決幾項關鍵問題。論文的研究有助 于助行機器人早日進入實用階段,為解決人口老齡化帶來的老人護理問題打下基 礎,具有重要的社會意義和經(jīng)濟價值。 關鍵詞:助行機器人,全向視覺標定,3D點云地圖創(chuàng)建,全局定位,快速點云 配準算法,機器人模塊化,用戶定位 II 摘要 Research on Key Technologies of Localization Method
10、for Walking Assistant Robot ABSTRACT The walking assistant robot (WAR) is a special kind of service robot which can assist the elderly to walk. The reason behind the development of the WAR is to replace traditional walking aids such as crutches and the walking frame.
11、 Moreover, besides the walking assistant function, it also offers more intelligent functions, such as health condition monitoring, voice interaction, navigation, user identification, user program reminders, information services, etc. The localization system which is an important c
12、omponent of WAR acts as a base for many intelligent functions. This dissertation covers a study of the localization system and the research contents herein are as follows. 1,The map of the environment is key for a-priori knowledge for the autonomous localization and navigation
13、 function of the WAR. Although 2D maps can meet the needs of the robot for self-localization, its drawback of uncertainty in the vertical direction made it unable to meet the demand for autonomous navigation in narrow environment such as would be encountered in a typical ho
14、me setting. Traditional 3D mapping methods need expensive equipment and the operation is complex. In this dissertation, we studied the 3D mapping method based on RGB-D (color- depth) sensor and proposed a map creation method based on improved “KinectFusion”, enabling
15、users to more easily re-create the family environment. This dissertation advances the KinectFusion algorithm with two improvements. On the one hand use is made of the environment feature to point out matching edges and consequently improve its positioning robustness, on the
16、 other hand ground point cloud is preset in the point cloud model to reduce the accumulated error and hence improve accuracy. III 上海交通大學博士學位論文 Additionally, a sub-map stitching method is proposed to solve the limitation of the size of the map built by “KinectFusion”,
17、based on the ground consistency and the calibration marker. 2,The working style of WAR is flexible and there is often the need to switch between passive control and autonomous operation, especially when its operating environment switches between indoor and outdoor. In this manner the c
18、ontinuous positioning is frequently interrupted. This requires the robot to have a strong global positioning feature and the ability to quickly re-orient itself. In this dissertation, the global search positioning dimensionality reduction method is proposed using the r
19、otational invariants for the initial search for a viable space robot position, and subsequently in the direction of the search space to get the orientation of the robot thus greatly enhancing the efficiency of its global positioning. 3,The traditional 2D continuous location trac
20、king method is mature, but it requires the use of laser sensors on the WAR which is unfavorable for purposes of minimizing cost. This article attempts to employ an RGB-D sensor instead of a 2D laser sensor for continuous positioning. The main idea is to exclusively use RGB-D information as
21、 a 3D point cloud for position tracking, making up for its disadvantage by selecting a small field of view in the horizontal direction. Traditional 3D point cloud registration algorithm, cannot fulfill the demands of real-time location. This dissertation presents a study of three-d
22、imensional point cloud registration using RGB-D sensors, and proposes a fast 3D point cloud registration method based on 3DLUT (Lookup Table) algorithm. This method can not only achieve real-time processing speeds, but also has a high degree of accuracy. 4,The human positioning funct
23、ion is a very important function and plays a great role towards improving user-friendliness of the WAR. The traditional laser-based localization method lacks the capacity to identify the user hence cannot work well in an environment full of people. Vision-based methods on
24、 the other hand are very sensitive to changes in light characteristics hence have low robustness. In this dissertation, we propose a people positioning based on omni-dimensional visual and IV 摘要 infrared markers for identification. The test results proved it to
25、be stable both indoors and outdoors. For the omni-directional vision system (odvs) calibration, we propose to use the image of the base circle contour to compute the posture of the mirror and determine the internal parameters, and then use the center of the mirror to determine the
26、true solution from two possibilities. Next, we propose using a special unique solution -Non-SVP P3P method– to determine the external parameters. The calibration method is simple and fast, and not only places low demand on the calibration object, but also
27、 has high accuracy. 5,Using the solutions for these key technologies, the hardware and software system for the WalkMate III WAR was designed and built. We proposed to use the module based system model to make the development of the software system easier, and make the structure of the
28、system clearer. Finally two intelligence functions were tested in order to evaluate the Feasibility of the whole system. These are the users finding function (when the robot power is switched on) and user tracking. The domestic research of WAR has just started. Because of its’ s
29、pecial working methods and have many differences with general mobile service robots, there are many issues to be resolved. The purpose of this study is: research on the localization system of WAR, and solve several key issues. The research contained in this dissertati
30、on should be useful towards helping the WAR enter the practical stage as soon as possible, laying the foundation for solving the problem of caring for the elderly caused by aging population problem. Eventually this and has important social significance and results in economic
31、value. Keywords: walking assistant robot, calibration of omnidirectional camera, 3D point cloud creating, global localization, fast point registration algorithm, modular robots, people localization V 上海交通大學博士學位論文 目錄 摘要 ................................................................
32、................................................................I ABSTRACT.................................................................................................................III 目錄 .......................................................................................................
33、......................VI 第一章緒論 .................................................................................................................1 1.1課題來源、研究背景及意義.........................................................................1 1.1.1課題來源.................................................
34、.............................................1 1.1.2課題研究背景及意義..........................................................................1 1.2助行機器人國內(nèi)外研究現(xiàn)狀.........................................................................3 1.2.1國外研究現(xiàn)狀...........................................................
35、...........................3 1.2.2國內(nèi)研究現(xiàn)狀......................................................................................9 1.3助行機器人定位關鍵技術...........................................................................12 1.3.1助行機器人功能需求...............................................................
36、.........12 1.3.2助行機器人定位系統(tǒng)關鍵技術........................................................14 1.4研究內(nèi)容與論文組織...................................................................................24 1.4.1研究內(nèi)容............................................................................................24 1.4.2
37、論文組織............................................................................................25 第二章基于改進 KinectFusion算法的 3D點云地圖創(chuàng)建.....................................26 2.1引言...............................................................................................................26 2.2
38、RGB-D傳感器介紹......................................................................................27 2.3 KinectFusion算法.........................................................................................28 2.3.1 KinectFusion算法的 ICP定位方法.................................................29 2.3.2
39、 KinectFusion算法的 TSDF點云融合算法 .....................................32 2.4改進的 KinectFusion算法..........................................................................33 2.4.1 KinectFusion算法的兩個問題分析..................................................33 2.4.2邊線點對應關系改進...............................
40、.........................................35 2.4.3預設地面模型改進............................................................................41 VI 目錄 2.5基于標志物的點云地圖拼接.......................................................................44 2.5.1標志物及其在子圖中的布置......................................
41、......................44 2.5.2子地圖中標志物坐標提取................................................................45 2.5.3相鄰子地圖位置計算........................................................................47 2.5.4基于 BA算法的閉環(huán)優(yōu)化................................................................48 2.6實驗與分析.....
42、..............................................................................................50 2.6.1邊線點對應關系改進方法測試........................................................50 2.6.2預設地面模型改進方法測試............................................................53 2.6.3子地圖拼接精度測試.............................
43、...........................................53 2.7小結...............................................................................................................55 第三章基于旋轉(zhuǎn)不變量的全局自定位方法 ...........................................................56 3.1引言...........................................
44、....................................................................56 3.2 2D距離傳感器數(shù)據(jù)的旋轉(zhuǎn)不變量..............................................................57 3.2.1 2D距離傳感器數(shù)據(jù)的數(shù)學定義.......................................................57 3.2.2旋轉(zhuǎn)不變量的定義...................................................
45、.........................58 3.2.3基于旋轉(zhuǎn)不變量的位置濾波及其閾值確定....................................58 3.2.4旋轉(zhuǎn)不變量濾除率分析....................................................................60 3.3基于旋轉(zhuǎn)不變量的二步定位法...................................................................62 3.3.1地圖遍歷.........................
46、...................................................................63 3.3.2 Omni_Scan采集.................................................................................65 3.3.3歐幾里得聚類....................................................................................65 3.3.4基于相關度匹配的朝向確定...........
47、.................................................66 3.3.5重定位策略........................................................................................67 3.3.6處理過程的中間結果示例................................................................68 3.4實驗與分析.....................................................
48、..............................................68 3.4.1直方圖數(shù)目和距離掃描采樣數(shù)的實驗確定....................................69 3.4.2環(huán)境中有動態(tài)物體時的定位精度測試............................................73 3.4.3地圖尺寸對定位的影響測試............................................................73 3.4.4與基于線段特征的全局定位方法對比實驗..............
49、......................74 VII 上海交通大學博士學位論文 3.4.5機器人定位精度試驗........................................................................76 3.5小結...............................................................................................................77 第四章基于 3DLUT點云快速配準算法的實時位置跟蹤方法......
50、.......................78 4.1引言...............................................................................................................78 4.2加速 ICP算法研究現(xiàn)狀 ..............................................................................78 4.3 2DLUT(Look Up Table,查找表)算法.....................
51、...............................79 4.3.1配準問題定義與分析........................................................................80 4.3.2誤差方程定義及基于 RPROP算法的誤差優(yōu)化.............................81 4.3.3 2D查找表的建立...............................................................................82 4.3.4基于 2DLUT的
52、連續(xù)位置跟蹤算法.................................................84 4.4 3DLUT算法..................................................................................................84 4.4.1 3D查找表的建立...............................................................................85 4.4.2內(nèi)存的優(yōu)化...................
53、.....................................................................86 4.4.3 RGB-D傳感器標定...........................................................................87 4.5實驗與分析...................................................................................................89 4.5.1與 ICP算法對比實驗
54、.......................................................................89 4.5.2實際環(huán)境定位精度測試....................................................................91 4.6小結...............................................................................................................93 第五章基于全向視覺及紅外標志的用戶定
55、位方法 ...............................................94 5.1引言...............................................................................................................94 5.2基于全向視覺及紅外標志物的用戶定位...................................................94 5.2.1全向視覺系統(tǒng).....................................
56、...............................................94 5.2.2紅外標志物目標識別........................................................................95 5.2.3目標的位置確定................................................................................99 5.3全向視覺傳感器標定...................................................
57、..............................100 5.3.1研究現(xiàn)狀..........................................................................................100 5.3.2參數(shù)定義..........................................................................................101 5.3.3全向視覺成像模型建立..........................................
58、........................102 5.3.4基于鏡面輪廓的內(nèi)部參數(shù)標定......................................................103 VIII 目錄 5.3.5基于單一解 Non-SVP問題的外部參數(shù)標定................................105 5.3.6多點優(yōu)化..........................................................................................107 5.4實驗
59、與分析.................................................................................................108 5.4.1全向視覺標定實驗..........................................................................108 5.4.2已知高度單點位置測量精度實驗..................................................112 5.4.3未知高度的兩點測量精度實驗...........
60、...........................................113 5.5小結.............................................................................................................114 第六章 WalkMateIII實驗平臺及功能測試............................................................115 6.1引言......................................
61、.......................................................................115 6.2 WalkmateIII硬件系統(tǒng) ................................................................................115 6.3 WalkmateIII軟件系統(tǒng) ................................................................................116 6.4集成功能測試...
62、..........................................................................................119 6.4.1開機用戶查找功能..........................................................................119 6.4.2用戶跟隨功能..................................................................................121 6.5小結..........
63、...................................................................................................122 zhi ku quan 20150721 第七章總結與展望 .................................................................................................123 7.1全文總結......................................................
64、...............................................123 7.2主要創(chuàng)新點.................................................................................................124 7.3研究展望.....................................................................................................124 參考文獻 ....................
65、...............................................................................................126 攻讀博士學位期間已發(fā)表或錄用的論文及專利 ...................................................134 攻讀博士學位期間參與的科研項目 .......................................................................135 致謝 ............................
66、...............................................................................................136 IX zhi ku quan 20150721 第一章緒論 第一章緒論 1.1課題來源、研究背景及意義 1.1.1課題來源 本論文受國家 863計劃先進制造技術領域重點項目“助老/助殘機器人概念 樣機研究與開發(fā)”(2006AA040203)資助。 1.1.2課題研究背景及意義 全球經(jīng)濟日益繁榮、科技不斷進步的同時,世界各國也正在步入一個老齡化 的階段。據(jù)統(tǒng)計1950年至2010年期間,發(fā)達國家60歲以上老年人口升至8%~17%, 發(fā)展中國家也升至4%~6%。到本世紀中葉,這兩個數(shù)字將分別達到 26%和 14%[1]。 而中國則面臨著更加嚴峻的人口老齡化問題,據(jù)中國社科院發(fā)布的《中國老齡事 zhi ku quan 20150721 業(yè)發(fā)展報告(2013)》[2]中指出截至 2012年底,我國 60歲以上老年人口數(shù)量達到 1
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習題含答案
- 2煤礦安全監(jiān)測工種技術比武題庫含解析
- 1 礦山應急救援安全知識競賽試題
- 1 礦井泵工考試練習題含答案
- 2煤礦爆破工考試復習題含答案
- 1 各種煤礦安全考試試題含答案