《廣西欽州市靈山縣第二中學高中數(shù)學 雙曲線的幾何性質二課件 新人教A版選修21》由會員分享,可在線閱讀,更多相關《廣西欽州市靈山縣第二中學高中數(shù)學 雙曲線的幾何性質二課件 新人教A版選修21(8頁珍藏版)》請在裝配圖網上搜索。
1、雙曲線的幾何性質二雙曲線的幾何性質二雙曲線的幾何性質雙曲線的幾何性質xyoax或ax ay ay或)0 ,( a), 0(axaby xbay ace)(222bac其中關于關于坐標坐標軸和軸和原點原點都對都對稱稱性性質質雙曲線雙曲線) 0, 0(12222babyax) 0, 0(12222babxay范圍范圍對稱對稱 性性 頂點頂點 漸近漸近 線線離心離心 率率圖象圖象 xyo復習復習:橢圓第二定義橢圓第二定義:點點M與與一個定一個定點點F(c,0)的距離的距離和它到和它到一條定一條定直線直線: 的距離的距離的比是的比是常數(shù)常數(shù) (ac0),這這個點個點M的的軌跡是軌跡是橢圓橢圓cax2
2、ace 問題問題:若把若把”ac0”改為改為”ca0” ,點的軌跡又是什么曲線呢點的軌跡又是什么曲線呢?ldOxyFFMl l例例:點點M與定點與定點F(c,0)的距離和它到)的距離和它到定直線定直線: 的距離的比是常數(shù)的距離的比是常數(shù) (ca0),求點求點M的軌跡方程的軌跡方程cax2 ace 橢圓與雙曲線定義的統(tǒng)一:點點M與與一個定一個定點的距點的距離和它離和它到一條到一條定直線定直線 的距離的距離的比是的比是常常數(shù)數(shù) ,ee10 e(1)當當 時時,M的軌跡是橢圓的軌跡是橢圓1e(2)當當 時時,M的軌跡是雙曲線的軌跡是雙曲線注意注意:比值比值 必須是必須是M到焦點的到焦點的距離與相應準
3、線的距離比距離與相應準線的距離比e、已知雙曲線、已知雙曲線 上上一點一點P到雙曲線右焦點的距離是到雙曲線右焦點的距離是 8, 求求P點到右準線的距離。點到右準線的距離。 1366422yx課堂練習:課堂練習:P127/8.(1)(2)變式變式1:(1)中中“P到雙曲線右焦點到雙曲線右焦點”改為改為“P到雙曲線左焦點到雙曲線左焦點”變式2:已知雙曲線已知雙曲線 上一點上一點P的橫坐標是的橫坐標是 9,求求P點到左焦點的距離。點到左焦點的距離。1366422yx2、已知點、已知點A(3, ,2),),F(xiàn)(2, ,0),), P為為雙曲線雙曲線 右支上右支上一點,求一點,求PA PF的的最小最小值。值。1322 yx21課堂練習課堂練習