《內(nèi)蒙古中考數(shù)學重點題型專項訓練 反比例函數(shù)綜合題.doc》由會員分享,可在線閱讀,更多相關《內(nèi)蒙古中考數(shù)學重點題型專項訓練 反比例函數(shù)綜合題.doc(20頁珍藏版)》請在裝配圖網(wǎng)上搜索。
反比例函數(shù)綜合題
類型一 反比例函數(shù)與一次函數(shù)結合
★1.如圖,在平面直角坐標系xOy中,函數(shù)y=4(x>0)x
的圖象與一次函數(shù) y=kx-k 圖象的交點為 A(m,2),一次函
數(shù)與 x 軸交于點 C.
(1)求一次函數(shù)的解析式;
(2)設一次函數(shù)y=kx-k的圖象與y軸交于點B,若P是
x 軸上一點,且滿足△PAB 的面積是4,求出點 P 的坐標.
第 1 題圖
解:(1)將A(m,2)代入y=4x(x>0)得,m=2,
則 A(2,2),
將 A(2,2)代入 y=kx-k 得,2k-k=2,
解得 k=2,則一次函數(shù)的解析式為 y=2x-2;
(2)∵一次函數(shù)y=2x-2與x軸的交點為C(1,0),與y軸的交點為 B(0,-2),S△ABP=S△ACP+S△BPC,
∴122CP+122CP=4,解得CP=2,則 P 點坐標為(3,0)或(-1,0).
★2.如圖,已知一次函數(shù)y=12x+b的圖象與反比例函數(shù)
k
y=x(x<0)的圖象交于點 A(-1,2)和點 B,點 C 在 y 軸上.
(1)當△ABC的周長最小時,求點C的坐標;
(2)當1x+b<k時,請直接寫出x的取值范圍.
2 x ....
第 2 題圖
解:(1)把點A(-1,2)分別代入y=12x+b與y=kx中,解得 b=52,k=-2,
∴兩函數(shù)的解析式分別為:y=12x+52,y=-2x,
y=12x+52
聯(lián)立y=-2x,
x=-1 x=-4
解得 或 y=1 ,
y=2 2
∴點 B(-4,1),
2
如解圖,作點 A(-1,2)關于 y
軸的對稱點 D,此時點 D 的坐
標為(1,2),連接BD交y軸于
點 C,連接 AC,此時△ABC 的
周長最小.
設直線 BD 的解析式為 y=k1x+b1,將點 D(1,2)和點 B(-4,
12)分別代入,得
k1+b1=2
k1=
3
10
1,解得
17,
-4k1+b1=2
b1=10
∴直線 BD 的解析式為:y=103x+1710,
當 x=0時,y=1710,
∴點 C(0,1710);
(2)當12x+b<kx,即12x+52<-2x時,
x 的取值范圍為:x<-4或-1<x<0.
★3.如圖,在平面直角坐標系xOy中,函數(shù)y=kx(x>0)的圖象
與直線 y=x-2交于點 A(3,m).
(1)求k,m的值;
(2)已知點P(n,n)(n>0),過點P作平行于x軸的直線,交直
線 y=x-2于點 M,過點 P 作平行于 y 軸的直線,交函數(shù) y =kx(x>0)的圖象于點N.
①當 n=1時,判斷線段 PM 與 PN 的數(shù)量關系,并說明理由;
②若 PN≥PM,結合函數(shù)圖象,直接寫出 n 的取值范圍.
第 3 題圖
解:(1)將A(3,m)代入y=x-2,得m=1, ∴A(3,1),
將 A(3,1)代入 y=kx,
得 k=3;
(2)①PM=PN.理由如下:
∵n=1,
∴P(1,1),
把 y=1代入 y=x-2,得 x=3,
∴M(3,1),
∴PM=2,
3
把 x=1代入 y=x,得 y=3,∴N(1,3),
∴PN=2,
∴PM= PN;
②n 的取值范圍為0
0,
3
∴當 00,有
3
n -n≥2,
∴n2+2n-3=(n+3)(n-1)≤0,
∴0 3 時,n- n>0,
3
有 n-n≥2,
∴n2-2n-3=(n-3)(n+1)≥0,
∴n≥3.
綜上所述,n的取值范圍為 02.
【解法提示】由題圖可知,當-32 時,一次
函數(shù) y=ax+b 的圖象在反比例函數(shù) y=kx的圖象下方,∴不等
式 ax+b2.
類型二 反比例函數(shù)與幾何圖形結合
★1.如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB
上的一個動點(F不與A,B重合). 過點F的反比例函數(shù)y=kx(k
>0)的圖象與BC邊交于點E.
(1)當F為AB的中點時,求該函數(shù)的解析式;
(2)當k為何值時,△EFA的面積最大,最大面積是多少?
第 1 題圖
解:(1)∵在矩形OABC中,F(xiàn)是AB的中點,OA=3,
OC=2,
∴點 F(3,1),
把點 F(3,1)代入 y=kx中,得1=k3,解得 k=3,
∴反比例函數(shù)的解析式為:y=3x;
(2)∵點E、F在反比例函數(shù)的圖象上,
∵點 E 的縱坐標為2,點 F 的橫坐標為3,
∴AF=k3,CE=k2,
∴BE=3-k2,
∴S△EFA=12AFBE=12k3(3-k2),
即 S△EFA=-121k2+12k=-121(k-3)2+34,∵-121<0,k>0,
∴當 k=3時,△EFA 的面積最大,最大面積為34.
★2.如圖,在平面直角坐標系中,一次函數(shù)的圖象與反
比例函數(shù)的圖象交于第二、四象限內(nèi)的 A,B 兩點,與 x 軸
交于點 C,與 y 軸交于點 D,點 B 的坐標是(m,-4),連接
AO,AO=5,sin∠AOC=35.
(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積.
第 2 題圖
解:(1)如解圖,過點A作AE⊥x軸于點E,
∵OA=5,sin∠AOC=35,
∴AE=OAsin∠AOC=535=3,
∴OE=OA2-AE2=4,
∴點 A(-4,3),
設反比例函數(shù)的解析式為 y=kx(k≠0),
把點 A(-4,3)代入解析式,解得 k=-12,
∴反比例函數(shù)的解析式為 y=-12x;
(2)把點B(m,-4)代入y=-12x中,解得m=3,
∴點 B(3,-4).
設直線 AB 的解析式為:y=kx+b,
把點 A(-4,3)和 B(3,-4)分別代入得,
-4k+b=3 k=-1
3k+b=-4,解得b=-1,∴直線AB的解析式為:y=-x-1,
則 AB 與 y 軸的交點 D(0,-1),
∴S△AOB=S△AOD+S△BOD=1214+1213=3.5.
第 2 題解圖
★3.如圖,在平面直角坐標系中,菱形ABCD的頂點C
與原點 O 重合,點 B 在 y 軸的正半軸上,點 A 在函數(shù) y=kx(k>0,
x>0)的圖象上,點 D 的坐標為(4,3).
(1)求k的值;
(2)若將菱形ABCD沿x軸正方向平移,當菱形的頂點D落在函數(shù) y=kx(k>0,x>0)的圖象上時,求菱形 ABCD 沿 x 軸正方向平移的距離.
第 3 題圖
解:(1)如解圖,過點D作x軸的垂線,垂足為點 F,易知點 A 在直線 FD 上,
∵點 D 的坐標為(4,3),
∴OF=4,DF=3,第3題解圖∴OD=5,
∵四邊形 ABCD 為菱形,
∴AD=OD=5,
∴點 A 的坐標為(4,8),
∴k=xy=48=32;
(2)將菱形ABCD沿x軸正方向平移,使得點D落在函數(shù)
y=32x(x>0)的圖象 D′點處,如解圖,過點 D′作 x 軸的垂線,垂足為 F′.
∵DF=3,∴D′F′=3,
∴點 D′的縱坐標為3.
∵點 D′在 y=32x的圖象上,
∴32x=3,解得x=323,
即 OF′=323,
∴FF′=OF′-OF=323-4=203,∴菱形 ABCD 平移的距離為203.
★4.如圖,函數(shù)y=kx的圖象過點A(1,2).
(1)求該函數(shù)的解析式;
(2)過點A分別向x軸和y軸作垂線,垂足為B和C,求
四邊形 ABOC 的面積;
(3)求證:過此函數(shù)圖象上任一點分別向x軸和y軸作垂
線,這兩條垂線與兩坐標軸所圍成矩形的面積為定值.
第 4 題圖
(1)解:把點A(1,2)代入y=kx中,解得k=2,
∴該函數(shù)的解析式為 y=2x;
(2)解:∵AC⊥y軸,AB⊥x軸,∠BOC=90,
∴四邊形 ABOC 是矩形,
又∵A(1,2),∴OB=1,AB=2,
∴S 四邊形ABOC=OBAB=12=2;
第 4 題解圖
(3)證明:設點M(a,b)是反比例函數(shù)圖象上的一點,如解圖,過點 M 作 MN⊥x 軸于點 N,作 MP⊥y 軸于點
P,
則 MN=|b|,MP=|a|,(6分)
∴S 矩形OPMN=ONOP=|a||b|=|ab|,∵點 M(a,b)在反比例函數(shù)的圖象上,
則有 b=2a,即 ab=2,
∴S=|ab|=2,∴結論得證.
★5.如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于
點 C,點 A(3,1)在反比例函數(shù)y=kx的圖象上.
(1)求反比例函數(shù)y=kx的表達式;
(2)在x軸的負半軸上存在一點P,使得S△AOP=12S△AOB,求點 P 的坐標;
(3) 若將△BOA 繞點 B 按逆時針方向旋轉60得到
△BDE,點 E 與點 A 對應,直接寫出點 E 的坐標,并判斷點
E 是否在該反比例函數(shù)的圖象上,說明理由.
第 5 題圖
解:(1)∵點A(3,1)在反比例函數(shù)y=kx的圖象上,
∴k=31=3,
∴反比例函數(shù)的表達式為 y=x3;
(2)∵A(3,1),
∴OC=3,AC=1,
易證△AOC∽△OBC ,可得 OC2=ACBC ,即(3 )2=
1BC,
∴BC=3,∴B(3,-3),
∴S△AOB=12OCAB=1234=23,
∵S△AOP=12S△AOB=3,
設 P(m,0),∴12|m|1=3,
∴|m|=23,
∵P 是 x 軸的負半軸上一點,∴m=-23,
∴P 點坐標為(-23,0);
(3)E(-3,-1),點E在反比例函數(shù)y=x3上,理由如下:
∵(-3)(-1)=3,
∴點 E 在反比例函數(shù)圖象上.
鏈接地址:http://www.szxfmmzy.com/p-5465771.html