數(shù)學(xué)第十二章 概率、隨機(jī)變量及其分布 12.5 二項(xiàng)分布及其應(yīng)用
《數(shù)學(xué)第十二章 概率、隨機(jī)變量及其分布 12.5 二項(xiàng)分布及其應(yīng)用》由會員分享,可在線閱讀,更多相關(guān)《數(shù)學(xué)第十二章 概率、隨機(jī)變量及其分布 12.5 二項(xiàng)分布及其應(yīng)用(73頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、12.5二項(xiàng)分布及其應(yīng)用第十二章概率、隨機(jī)變量及其分布基礎(chǔ)知識自主學(xué)習(xí)課時(shí)作業(yè)題型分類深度剖析內(nèi)容索引基礎(chǔ)知識自主學(xué)習(xí)1.條件概率及其性質(zhì)條件概率及其性質(zhì)(1)對于任何兩個(gè)事件A和B,在已知事件A發(fā)生的條件下,事件B發(fā)生的概率叫做 ,用符號 來表示,其公式為P(B|A)_(P(A)0).在古典概型中,若用n(A)表示事件A中基本事件的個(gè)數(shù),則P(B|A) .知識梳理?xiàng)l件概率P(B|A)(2)條件概率具有的性質(zhì) ;如果B和C是兩個(gè)互斥事件,則P(BC|A) .2.相互獨(dú)立事件相互獨(dú)立事件(1)對于事件A,B,若事件A的發(fā)生與事件B的發(fā)生互不影響,則稱事件 .(2)若A與B相互獨(dú)立,則P(B|A)
2、 ,P(AB)P(B|A)P(A) .0P(B|A)1P(B|A)P(C|A)A,B是相互獨(dú)立事件P(B)P(A)P(B)(4)若P(AB)P(A)P(B),則 .3.獨(dú)立重復(fù)試驗(yàn)與二項(xiàng)分布獨(dú)立重復(fù)試驗(yàn)與二項(xiàng)分布(1)獨(dú)立重復(fù)試驗(yàn)是指在相同條件下可重復(fù)進(jìn)行的,各次之間相互獨(dú)立的一種試驗(yàn),在這種試驗(yàn)中每一次試驗(yàn)只有 種結(jié)果,即要么發(fā)生,要么不發(fā)生,且任何一次試驗(yàn)中發(fā)生的概率都是一樣的.(2)在n次獨(dú)立重復(fù)試驗(yàn)中,用X表示事件A發(fā)生的次數(shù),設(shè)每次試驗(yàn)中事件A發(fā)生的概率為p,則P(Xk) ,此時(shí)稱隨機(jī)變量X服從 ,記為 ,并稱p為成功概率.A與B相互獨(dú)立兩二項(xiàng)分布XB(n,p)題組一思考辨析題組一思
3、考辨析1.判斷下列結(jié)論是否正確(請?jiān)诶ㄌ栔写颉啊被颉啊?(1)條件概率一定不等于它的非條件概率.()(2)相互獨(dú)立事件就是互斥事件.()(3)對于任意兩個(gè)事件,公式P(AB)P(A)P(B)都成立.()(4)二項(xiàng)分布是一個(gè)概率分布,其公式相當(dāng)于(ab)n二項(xiàng)展開式的通項(xiàng)公式,其中ap,b1p.()(5)P(B|A)表示在事件A發(fā)生的條件下,事件B發(fā)生的概率,P(AB)表示事件A,B同時(shí)發(fā)生的概率.()基礎(chǔ)自測123456題組二教材改編題組二教材改編2.P55T3天氣預(yù)報(bào),在元旦假期甲地降雨概率是0.2,乙地降雨概率是0.3.假設(shè)在這段時(shí)間內(nèi)兩地是否降雨相互之間沒有影響,則這兩地中恰有一個(gè)地方降
4、雨的概率為 A.0.2 B.0.3C.0.38 D.0.56答案解析1234560.20.70.80.30.38.1234563.P54T2已知盒中裝有3個(gè)紅球、2個(gè)白球、5個(gè)黑球,它們大小形狀完全相同,現(xiàn)需一個(gè)紅球,甲每次從中任取一個(gè)不放回,則在他第一次拿到白球的條件下,第二次拿到紅球的概率為 答案解析解析解析設(shè)A第一次拿到白球,B第二次拿到紅球,123456解析答案題組三易錯(cuò)自糾題組三易錯(cuò)自糾1234565.從1,2,3,4,5中任取2個(gè)不同的數(shù),事件A為“取到的2個(gè)數(shù)之和為偶數(shù)”,事件B為“取到的2個(gè)數(shù)均為偶數(shù)”,則P(B|A)等于 解析答案1234566.箱子里有5個(gè)黑球,4個(gè)白球,每
5、次隨機(jī)取出一個(gè)球,若取出黑球,則放回箱中,重新取球;若取出白球,則停止取球,那么在第4次取球之后停止的概率為 解析答案123456題型分類深度剖析1.已知盒中裝有3只螺口燈泡與7只卡口燈泡,這些燈泡的外形與功率都相同且燈口向下放著,現(xiàn)需要一只卡口燈泡,電工師傅每次從中任取一只且不放回,則在他第1次抽到的是螺口燈泡的條件下,第2次抽到的是卡口燈泡的概率為 解析答案題型一條件概率自主演練自主演練解析解析方法一方法一設(shè)事件A為“第1次抽到的是螺口燈泡”,事件B為“第2次抽到的是卡口燈泡”,解答2.一個(gè)正方形被平均分成9個(gè)部分,向大正方形區(qū)域隨機(jī)地投擲一個(gè)點(diǎn)(每次都能投中).設(shè)投中最左側(cè)3個(gè)小正方形區(qū)
6、域的事件記為A,投中最上面3個(gè)小正方形或正中間的1個(gè)小正方形區(qū)域的事件記為B,求P(AB),P(A|B).解解如圖,n()9,n(A)3,n(B)4,(1)利用定義,分別求P(A)和P(AB),得P(B|A) ,這是通用的求條件概率的方法.(2)借助古典概型概率公式,先求事件A包含的基本事件數(shù)n(A),再在事件A發(fā)生的條件下求事件B包含的基本事件數(shù),即n(AB),得P(B|A) .思維升華思維升華典例典例 (2017哈爾濱質(zhì)檢)某企業(yè)有甲、乙兩個(gè)研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為 現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B.設(shè)甲、乙兩組的研發(fā)相互獨(dú)立.(1)求至少有一種新產(chǎn)品研發(fā)成功的概率
7、;題型二相互獨(dú)立事件的概率師生共研師生共研解答(2)若新產(chǎn)品A研發(fā)成功,預(yù)計(jì)企業(yè)可獲利潤120萬元;若新產(chǎn)品B研發(fā)成功,預(yù)計(jì)企業(yè)可獲利潤100萬元,求該企業(yè)可獲利潤的分布列.解答解解設(shè)企業(yè)可獲利潤為X(萬元),則X的可能取值為0,100,120,220,故所求的分布列為X0100120220P求相互獨(dú)立事件同時(shí)發(fā)生的概率的方法(1)首先判斷幾個(gè)事件的發(fā)生是否相互獨(dú)立.(2)求相互獨(dú)立事件同時(shí)發(fā)生的概率的方法利用相互獨(dú)立事件的概率乘法公式直接求解;正面計(jì)算較煩瑣或難以入手時(shí),可從其對立事件入手計(jì)算.思維升華思維升華(1)求乙、丙兩個(gè)家庭各自回答正確這道題的概率;解答解解記“甲回答正確這道題”、“
8、乙回答正確這道題”、“丙回答正確這道題”分別為事件A,B,C,則P(A)(2)求甲、乙、丙三個(gè)家庭中不少于2個(gè)家庭回答正確這道題的概率.解解有0個(gè)家庭回答正確的概率為有1個(gè)家庭回答正確的概率為所以不少于2個(gè)家庭回答正確這道題的概率為解答題型三獨(dú)立重復(fù)試驗(yàn)與二項(xiàng)分布多維探究多維探究命題點(diǎn)命題點(diǎn)1根據(jù)獨(dú)立重復(fù)試驗(yàn)求概率根據(jù)獨(dú)立重復(fù)試驗(yàn)求概率典例典例 某市電視臺舉辦紀(jì)念紅軍長征勝利知識回答活動(dòng),宣傳長征精神,首先在甲、乙、丙、丁四個(gè)不同的公園進(jìn)行支持簽名活動(dòng).公園甲乙丙丁獲得簽名人數(shù)45603015然后在各公園簽名的人中按分層抽樣的方式抽取10名幸運(yùn)之星回答問題,從10個(gè)關(guān)于長征的問題中隨機(jī)抽取4個(gè)
9、問題讓幸運(yùn)之星回答,全部答對的幸運(yùn)之星獲得一份紀(jì)念品.(1)求此活動(dòng)中各公園幸運(yùn)之星的人數(shù);解答解解甲、乙、丙、丁四個(gè)公園幸運(yùn)之星的人數(shù)分別為(2)若乙公園中每位幸運(yùn)之星對每個(gè)問題答對的概率均為 ,求恰好2位幸運(yùn)之星獲得紀(jì)念品的概率;解答(3)若幸運(yùn)之星小李對其中8個(gè)問題能答對,而另外2個(gè)問題答不對,記小李答對的問題數(shù)為X,求X的分布列.解答所以X的分布列為X234P命題點(diǎn)命題點(diǎn)2根據(jù)獨(dú)立重復(fù)試驗(yàn)求二項(xiàng)分布根據(jù)獨(dú)立重復(fù)試驗(yàn)求二項(xiàng)分布典例典例 一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20
10、分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得200分).設(shè)每次擊鼓出現(xiàn)音樂的概率為 ,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.(1)設(shè)每盤游戲獲得的分?jǐn)?shù)為X,求X的分布列;解答解解X可能的取值為10,20,100,200.根據(jù)題意,有所以X的分布列為X1020100200P(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?解答解解設(shè)“第i盤游戲沒有出現(xiàn)音樂”為事件Ai(i1,2,3),所以“三盤游戲中至少有一盤出現(xiàn)音樂”的概率為獨(dú)立重復(fù)試驗(yàn)與二項(xiàng)分布問題的常見類型及解題策略(1)在求n次獨(dú)立重復(fù)試驗(yàn)中事件恰好發(fā)生k次的概率時(shí),首先要確定好n和k的值,再準(zhǔn)確利用公式求概率.(2)在根據(jù)獨(dú)
11、立重復(fù)試驗(yàn)求二項(xiàng)分布的有關(guān)問題時(shí),關(guān)鍵是理清事件與事件之間的關(guān)系,確定二項(xiàng)分布的試驗(yàn)次數(shù)n和變量的概率,求得概率.思維升華思維升華跟蹤訓(xùn)練跟蹤訓(xùn)練 (2017牡丹江模擬)為研究家用轎車在高速公路上的車速情況,交通部門隨機(jī)選取100名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況為:在55名男性駕駛員中,平均車速超過100 km/h的有40人,不超過100 km/h的有15人;在45名女性駕駛員中,平均車速超過100 km/h的有20人,不超過100 km/h的有25人.(1)在被調(diào)查的駕駛員中,從平均車速不超過100 km/h的人中隨機(jī)抽取2人,求這2人恰好有1名男性駕駛員和1
12、名女性駕駛員的概率;解答(2)以上述樣本數(shù)據(jù)估計(jì)總體,從高速公路上行駛的家用轎車中隨機(jī)抽取3輛,記這3輛車平均車速超過100 km/h且為男性駕駛員的車輛為X,求X的分布列.解答所以X的分布列為X0123P獨(dú)立事件與互斥事件現(xiàn)場糾錯(cuò)現(xiàn)場糾錯(cuò)糾錯(cuò)心得現(xiàn)場糾錯(cuò)錯(cuò)解展示錯(cuò)解展示:錯(cuò)解展示:現(xiàn)場糾錯(cuò)現(xiàn)場糾錯(cuò)(2)設(shè)“第i次射擊擊中目標(biāo)”為事件Ai(i1,2,3,4,5),“射手在5次射擊中,有3次連續(xù)擊中目標(biāo),另外2次未擊中目標(biāo)”為事件A,則糾錯(cuò)心得糾錯(cuò)心得(1)搞清事件之間的關(guān)系,不要混淆“互斥”與“獨(dú)立”.(2)區(qū)分獨(dú)立事件與n次獨(dú)立重復(fù)試驗(yàn).課時(shí)作業(yè)1.把一枚硬幣連續(xù)拋兩次,記“第一次出現(xiàn)正面”
13、為事件A,“第二次出現(xiàn)正面”為事件B,則P(B|A)等于 基礎(chǔ)保分練解析答案123456789101112131415162.(2018大連模擬)某地區(qū)空氣質(zhì)量監(jiān)測資料表明,一天的空氣質(zhì)量為優(yōu)良的概率是0.75,連續(xù)兩天為優(yōu)良的概率是0.6,已知某天的空氣質(zhì)量為優(yōu)良,則隨后一天的空氣質(zhì)量為優(yōu)良的概率是 A.0.8 B.0.75C.0.6 D.0.45解析答案12345678910111213141516解析答案123456789101112131415164.投籃測試中,每人投3次,至少投中2次才能通過測試.已知某同學(xué)每次投籃投中的概率為0.6,且各次投籃是否投中相互獨(dú)立,則該同學(xué)通過測試的概
14、率為 A.0.648 B.0.432 C.0.36 D.0.312解析答案12345678910111213141516解析解析3次投籃投中2次的概率為投中3次的概率為P(k3)0.63,解析答案123456789101112131415165.一袋中有5個(gè)白球,3個(gè)紅球,現(xiàn)從袋中往外取球,每次任取一個(gè)記下顏色后放回,直到紅球出現(xiàn)10次時(shí)停止,設(shè)停止時(shí)共取了X次球,則P(X12)等于 解析解析“X12”表示第12次取到紅球,前11次有9次取到紅球,2次取到白球,解析答案12345678910111213141516123456789101112131415161P(A)1P(B)1P(C)解析
15、答案123456789101112131415167.(2017德陽模擬)一盒中放有大小相同的10個(gè)小球,其中8個(gè)黑球、2個(gè)紅球,現(xiàn)甲、乙二人先后各自從盒子中無放回地任意取2個(gè)小球,已知甲取到了2個(gè)黑球,則乙也取到2個(gè)黑球的概率是_.8.某一部件由三個(gè)電子元件按如圖所示方式連接而成,元件1或元件2正常工作,且元件3正常工作,則部件正常工作.設(shè)三個(gè)電子元件的使用壽命(單位:小時(shí))均服從正態(tài)分布N(1 000,502),且各個(gè)元件能否正常工作相互獨(dú)立,那么該部件的使用壽命超過1 000小時(shí)的概率為_.解析答案123456789101112131415161234567891011121314151
16、6該部件的使用壽命超過1 000小時(shí)的概率9.位于坐標(biāo)原點(diǎn)的一個(gè)質(zhì)點(diǎn)P按下述規(guī)則移動(dòng):質(zhì)點(diǎn)每次移動(dòng)一個(gè)單位,移動(dòng)的方向?yàn)橄蛏匣蛳蛴?,并且向上、向右移?dòng)的概率都是 .質(zhì)點(diǎn)P移動(dòng)五次后位于點(diǎn)(2,3)的概率是_.解析答案12345678910111213141516解析答案1234567891011121314151610.(2017長沙模擬)排球比賽的規(guī)則是5局3勝制(無平局),甲在每局比賽獲勝的概率都為 ,前2局中乙隊(duì)以20領(lǐng)先,則最后乙隊(duì)獲勝的概率是_.11.挑選空軍飛行員可以說是“萬里挑一”,要想通過需要五關(guān):目測、初檢、復(fù)檢、文考(文化考試)、政審.若某校甲、乙、丙三位同學(xué)都順利通過了前
17、兩關(guān),根據(jù)分析甲、乙、丙三位同學(xué)通過復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過文考關(guān)的概率分別是0.6,0.5,0.4,由于他們平時(shí)表現(xiàn)較好,都能通過政審關(guān),若后三關(guān)之間通過與否沒有影響.(1)求甲、乙、丙三位同學(xué)中恰好有一人通過復(fù)檢的概率;12345678910111213141516解答(2)設(shè)只要通過后三關(guān)就可以被錄取,求錄取人數(shù)X的分布列.解答12345678910111213141516解解甲被錄取的概率為P甲0.50.60.3,同理P乙0.60.50.3,P丙0.750.40.3.12345678910111213141516故X的分布列為X0123P0.3430.4410
18、.1890.02712.張先生家住H小區(qū),他工作在C科技園區(qū),從家開車到公司上班路上有L1,L2兩條路線(如圖),L1路線上有A1,A2,A3三個(gè)路口,各路口遇到紅燈的概率均為 ;L2路線上有B1,B2兩個(gè)路口,各路口遇到紅燈的概率依次為12345678910111213141516(1)若走L1路線,求最多遇到1次紅燈的概率;解答解解設(shè)走L1路線最多遇到1次紅燈為A事件,12345678910111213141516(2)若走L2路線,求遇到紅燈次數(shù)X的分布列.12345678910111213141516解答解解依題意,X的可能取值為0,1,2.所以隨機(jī)變量X的分布列為X012P13.甲罐
19、中有5個(gè)紅球,2個(gè)白球和3個(gè)黑球,乙罐中有4個(gè)紅球,3個(gè)白球和3個(gè)黑球.先從甲罐中隨機(jī)取出一球放入乙罐,分別以A1,A2和A3表示由甲罐取出的球是紅球,白球和黑球的事件;再從乙罐中隨機(jī)取出一球,以B表示由乙罐取出的球是紅球的事件,則下列結(jié)論中正確的是_.(寫出所有正確結(jié)論的序號)技能提升練解析答案12345678910111213141516事件B與事件A1相互獨(dú)立;A1,A2,A3是兩兩互斥的事件;P(B)的值不能確定,它與A1,A2,A3中哪一個(gè)發(fā)生都有關(guān).解析解析由題意知A1,A2,A3是兩兩互斥的事件,而P(B)P(A1B)P(A2B)P(A3B)P(A1)P(B|A1)P(A2)P(
20、B|A2)P(A3)P(B|A3)1234567891011121314151612345678910111213141516解答14.(2017蘭州模擬)甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是假設(shè)兩人射擊是否擊中目標(biāo)相互之間沒有影響,每人每次射擊是否擊中目標(biāo)相互之間也沒有影響.(1)求甲射擊4次,至少有1次未擊中目標(biāo)的概率;12345678910111213141516解解記“甲連續(xù)射擊4次,至少有1次未擊中目標(biāo)”為事件A1,則事件A1的對立事件 為“甲連續(xù)射擊4次,全部擊中目標(biāo)”.由題意知,射擊4次相當(dāng)于做4次獨(dú)立重復(fù)試驗(yàn).解答(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)
21、3次的概率;解解記“甲射擊4次,恰好有2次擊中目標(biāo)”為事件A2,“乙射擊4次,恰好有3次擊中目標(biāo)”為事件B2,由于甲、乙射擊相互獨(dú)立,12345678910111213141516解答(3)假設(shè)每人連續(xù)2次未擊中目標(biāo),則終止其射擊.問:乙恰好射擊5次后,被終止射擊的概率是多少?解解記“乙恰好射擊5次后,被終止射擊”為事件A3,“乙第i次射擊未擊中”為事件Di(i1,2,3,4,5),由于各事件相互獨(dú)立,故12345678910111213141516拓展沖刺練答案解析1234567891011121314151615.設(shè)隨機(jī)變量XB(2,p),隨機(jī)變量YB(3,p),若P(X1) ,則P(Y1
22、)_.解析解析XB(2,p),16.現(xiàn)有4個(gè)人去參加某娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.(1)求這4個(gè)人中恰有2人去參加甲游戲的概率;解答12345678910111213141516設(shè)“這4個(gè)人中恰有k人去參加甲游戲”為事件Ak(k0,1,2,3,4).12345678910111213141516故這4個(gè)人中恰有2人去參加甲游戲的概率為(2)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;解答12345678910111213141516解解設(shè)“這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則BA3A4.由于A3與A4互斥,故(3)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記|XY|,求隨機(jī)變量的分布列.12345678910111213141516解答024P12345678910111213141516解解的所有可能取值為0,2,4.由于A1與A3互斥,A0與A4互斥,故所以的分布列是
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案