《福建省高考數(shù)學(xué)文二輪專題總復(fù)習(xí) 專題3 第2課時(shí) 不等式的證明課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《福建省高考數(shù)學(xué)文二輪專題總復(fù)習(xí) 專題3 第2課時(shí) 不等式的證明課件(23頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專題三 不等式 1高考考點(diǎn) 理解不等式的性質(zhì)及其應(yīng)用;掌握兩個(gè)(不擴(kuò)展到三個(gè))正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會(huì)簡(jiǎn)單的應(yīng)用 不等式性質(zhì)及其不等式證明是高考數(shù)學(xué)的重點(diǎn)內(nèi)容之一,高考數(shù)學(xué)在選擇題、填空題、解答題三種題型中均有各種類型的不等式題,但單獨(dú)證明的大題出現(xiàn)的可能性不大,更多的是與函數(shù)、方程、數(shù)列、解析幾何等交叉、滲透命題,常出現(xiàn)在壓軸題中,立意新穎,綜合性較強(qiáng) 2易錯(cuò)易漏 利用不等式性質(zhì)時(shí)忽視對(duì)字母符號(hào)的討論; 使用比較法證明不等式時(shí)變形不徹底、不熟練、不到位; 使用基本不等式解題時(shí)忽視“一正、二定、三相等”的要求; 在多次連續(xù)使用基本不等式時(shí)忽視不等式的方向以及等號(hào)是否成
2、立 3歸納總結(jié): 在解題中要分析問題的結(jié)構(gòu)特征,變形、換元是常用的方法,拼、湊、添是常用的技巧2222222.2Cababab因?yàn)?,所以【解析】因此?yīng)選,2222002()11A. B.22C.2 1D.3.abababababab,且,則 2max260302(25 .)2252“ ”xyxyxyxySxySxy設(shè)矩形的長(zhǎng)為 ,寬為 ,則,所以,所以,當(dāng)且僅當(dāng)時(shí)【解析】所以取號(hào)2.周長(zhǎng)為60的矩形面積的最大值為()A. 225 B. 450C. 500 D. 900130012()A. 72 6 B. 2 3 C. 72 3 D. .143ababab已知 , ,且,則的最小值為 22222
3、221()cos1sin1coscos33coss71in3s2in62.2aababbabab 【解析三角換元 令,則;令,則,將 ,代入,即可得的】最小值為解法 :(1)13212()272 6.327ababababba 解法 :逆代332244334422225532235544252 52 5252 52 5 (252 52 5 )252 52 5 (252 52 5)4.(2011)m nm nab觀察下列一組不等式:;或;或;將上述不等式在左右兩端仍為兩項(xiàng)和的情況下加以推廣,使以上的不等式成為推廣不等式的特例設(shè)推廣不等式的左側(cè)為,則此推廣不等式可寫為_陜西西工模擬_.(0)aba
4、 bmn, , 為正整數(shù).m nm nmnnmaba ba b這是一道關(guān)于不等式的類比歸納題,運(yùn)用于不等式的性【解析】故應(yīng)填質(zhì),5.已知下列不等式:x2+32x(xR);a5+b5a3b2+a2b3(a,bR);a2+b22(a-b-1)其中正確的序號(hào)是_ 22222255322322222232120211103()240.xxxababababa ba bababaabbbabababab證法如下:對(duì)于 ;對(duì)于,對(duì)于,有,只有當(dāng)時(shí),才能【解析】 所以應(yīng)填立、成 1比較法是最基本也是非常重要的方法作差比較法的步驟為:作差、變形、判斷差的符號(hào),變形是手段,判斷差的符號(hào)才是目的;作商比較法的步驟
5、:作商、變形、判斷商與1的大小 22222222 1 0 ()0 ( 2 3 )2()12 222aaaaabab abababababab RRR掌握并應(yīng)用常用不等式及其變形:;,它的變形有, 3.以不等式為紐帶,體現(xiàn)了各數(shù)學(xué)分支之間的交叉和綜合,尤其是對(duì)變量的范圍和最大(小)值的研究,常常用到不等式的性質(zhì)以及均值定理等 22224() .22 (00 4 5)22020.abababababab abbabaababababababab ,及其變形, 題型一 比較法和綜合法證明不等式 【例1】證明:a2+b2+1a+b+ab.222222221 1113 ()10241. 11)1(aba
6、babababbbababababab 解法,所以當(dāng)且僅當(dāng),時(shí)【解析】取等號(hào):22222222212 ,122121.(11)2ababbbaaababababababab 因?yàn)椋?,所以?dāng)且僅當(dāng),時(shí)解:取等號(hào)法 2222222222111111413633310abababababbg aababbbbbbbb 解,令,:則法,【點(diǎn)評(píng)】法1是比較法,證明的關(guān)鍵是設(shè)法將差變形,變形的常用方法是配方法和因式分解法;法2是綜合法,其關(guān)鍵是利用某些已經(jīng)證明過的不等式作為基礎(chǔ),再運(yùn)用不等式性質(zhì)推導(dǎo)出所要證的不等式;法3構(gòu)造一元二次方程,并利用判別式證法證明不等式 22220101.g aababab
7、ababab 所以,所以,即題型二 應(yīng)用基本不等式證明不等式55214244xyxx已【例知,求函數(shù)的】最大值5450414513451 54354125431.5415415.4xxyxxxxxxxxyx 因?yàn)椋?,所以?dāng)且僅當(dāng),即時(shí),【解析】故最大大值,值為有最【點(diǎn)評(píng)】在利用基本不等式求解問題時(shí)要注意“一正、二定、三相等”的要求,有時(shí)還需要對(duì)式子進(jìn)行變形,本題典型地說明了利用基本不等式求解問題一些通性通法的處理方法題型三 不等式與函數(shù) 【例3】已知不等式2x-1m(x2-1)(1)若對(duì)于所有實(shí)數(shù)x不等式恒成立,求m的取值范圍;(2)若對(duì)于m-2,2不等式恒成立,求x的取值范圍 22100
8、4410.1mxxmmxmmmm R原不等式等價(jià)于對(duì)【解析】故滿足恒成立,題設(shè)的當(dāng)且僅當(dāng),得不存在 2221713|.21212,20202210202230131322.17722212f mxmxmf mfxxfxxxxxxxx 故所求 的設(shè),取由于時(shí),恒成立,當(dāng)且僅當(dāng),即范圍是,解得值【點(diǎn)評(píng)】函數(shù)、方程與不等式的結(jié)合是近年高考的熱點(diǎn)和難點(diǎn),把不等式化為函數(shù)進(jìn)行求解第(2)問中含有兩個(gè)未知數(shù),要根據(jù)題意把其中一個(gè)看作自變量,另外一個(gè)當(dāng)作參數(shù)11_mabcabbcacm設(shè)且恒【成立,則備選例題】的取值范圍是0001111()()11121441.abcabbcacacabbcabbcabbcbcababbcbcababbmc 因?yàn)椋?,故,?dāng)且僅當(dāng)時(shí),等【解析】故號(hào)成立,