2019高考數(shù)學(xué)一輪復(fù)習(xí) 第六章 數(shù)列 6.4 數(shù)列的綜合應(yīng)用課件 理.ppt
《2019高考數(shù)學(xué)一輪復(fù)習(xí) 第六章 數(shù)列 6.4 數(shù)列的綜合應(yīng)用課件 理.ppt》由會員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)一輪復(fù)習(xí) 第六章 數(shù)列 6.4 數(shù)列的綜合應(yīng)用課件 理.ppt(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第六章數(shù)列 6 4數(shù)列的綜合運用 高考理數(shù) 考點一數(shù)列求和1 公式法 1 直接用等差 等比數(shù)列的求和公式求解 2 掌握一些常見的數(shù)列的前n項和公式 1 2 3 n 2 4 6 2n n2 n 1 3 5 2n 1 n2 12 22 32 n2 13 23 33 n3 知識清單 2 倒序相加法如果一個數(shù)列 an 與首末兩端等 距離 的兩項的和相等或等于同一常數(shù) 那么求這個數(shù)列的前n項和即可用倒序相加法 3 錯位相減法如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)項之積構(gòu)成的 那么這個數(shù)列的前n項和即可用此法來求 4 裂項相消法把數(shù)列的通項拆成兩項之差 在求和時中間的一些項可以相互抵消 從而求得其和 常見的拆項公式 1 2 3 5 分組求和法有一類數(shù)列 既不是等差數(shù)列 也不是等比數(shù)列 若將這類數(shù)列適當(dāng)拆開 可分為幾個等差 等比或常見的數(shù)列 即先分別求和 再合并 形如 1 an bn 其中 2 an 考點二數(shù)列的綜合應(yīng)用1 解答數(shù)列應(yīng)用題的基本步驟 1 審題 仔細(xì)閱讀材料 認(rèn)真理解題意 2 建模 將已知條件翻譯成數(shù)學(xué) 數(shù)列 語言 將實際問題轉(zhuǎn)化成數(shù)學(xué)問題 弄清該數(shù)列的特征以及要求什么 3 求解 求出該問題的數(shù)學(xué)解 4 還原 將所求結(jié)果還原到原實際問題中 2 數(shù)列應(yīng)用題常見模型 1 等差模型 如果增加 或減少 的量是一個固定值 那么該模型是等差模型 增加 或減少 的量就是公差 其一般形式是an 1 an d 常數(shù) 2 等比模型 如果后一個量與前一個量的比是一個固定的數(shù) 那么該模 型是等比模型 這個固定的數(shù)就是公比 其一般形式是 q q為常數(shù) 且q 0 3 混合模型 在一個問題中同時涉及等比數(shù)列和等差數(shù)列的模型 4 生長模型 如果某一個量 每一期以一個固定的百分?jǐn)?shù)增加 或減少 同時又以一個固定的具體量增加 或減少 稱該模型為生長模型 如分期付款問題 樹木的生長與砍伐問題等 如設(shè)貸款總額為a 年利率為r 等額還款數(shù)為b 分n期還完 則b a 5 遞推模型 如果容易推導(dǎo)該數(shù)列任意一項an與它的前一項an 1 或前n項 間的遞推關(guān)系式 那么我們可以用遞推數(shù)列的知識求解問題 1 一般地 如果數(shù)列 an 是等差數(shù)列 bn 是等比數(shù)列 求數(shù)列 an bn 的前n項和時 可采用錯位相減法 2 用錯位相減法求和時 應(yīng)注意 1 要善于識別題目類型 特別是等比數(shù)列公比為負(fù)數(shù)的情形 2 在寫出 Sn 與 qSn 的表達(dá)式時應(yīng)特別注意將兩式 錯項對齊 以便于下一步準(zhǔn)確地寫出 Sn qSn 的表達(dá)式 3 應(yīng)用等比數(shù)列求和公式必須注意公比q 1這一前提條件 如果不能確定公比q是否為1 應(yīng)分兩種情況進(jìn)行討論 這在以前的高考中經(jīng)常考查 錯位相減法求和 方法技巧 例1 2017廣東惠州4月模擬 17 已知等差數(shù)列 an 滿足 a1 a2 a2 a3 an an 1 2n n 1 n N 1 求數(shù)列 an 的通項公式 2 求數(shù)列的前n項和Sn 解題導(dǎo)引 解析 1 設(shè)等差數(shù)列 an 的公差為d 由已知得 2分 即所以解得 4分 所以an 2n 1 6分 2 由 1 得 所以Sn 1 Sn 8分 得Sn 1 1 3 10分 所以Sn 6 12分 1 對于裂項后明顯有能夠相消的項的一類數(shù)列 在求和時常用 裂項法 分式數(shù)列的求和多用此法 2 利用裂項相消法求和時 應(yīng)注意抵消后并不一定只剩下第一項和最后一項 也有可能前面剩兩項 后面也剩兩項 將通項裂項后 有時需要調(diào)整前面的系數(shù) 使裂開的兩項之差和系數(shù)之積與原通項相等 例2 2017江西贛州信豐中學(xué)高考適應(yīng)性測試 17 已知數(shù)列 an 的前n項和為Sn 且a2 8 Sn n 1 1 求數(shù)列 an 的通項公式 2 求數(shù)列的前n項和Tn 裂項相消法求和 解題導(dǎo)引- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019高考數(shù)學(xué)一輪復(fù)習(xí) 第六章 數(shù)列 6.4 數(shù)列的綜合應(yīng)用課件 2019 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第六 綜合 應(yīng)用 課件
鏈接地址:http://www.szxfmmzy.com/p-5754490.html