【溫馨提示】====【1】設(shè)計包含CAD圖紙 和 DOC文檔,均可以在線預(yù)覽,所見即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無任何水印,,充值下載得到【資源目錄】里展示的所有文件======【2】若題目上備注三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預(yù)覽的簡潔性,店家將三維文件夾進行了打包。三維預(yù)覽圖,均為店主電腦打開軟件進行截圖的,保證能夠打開,下載后解壓即可。======【3】特價促銷,,拼團購買,,均有不同程度的打折優(yōu)惠,,詳情可咨詢QQ:1304139763 或者 414951605======【4】 題目最后的備注【YC系列】為店主整理分類的代號,與課題內(nèi)容無關(guān),請忽視
XXXXX
畢 業(yè) 設(shè) 計 (論 文)
剪板機傳動系統(tǒng)設(shè)計
系 名:
專業(yè)班級:
學(xué)生姓名:
學(xué) 號:
指導(dǎo)教師姓名:
指導(dǎo)教師職稱:
年 月
目 錄
摘 要 III
Abstract IV
第一章 緒論 1
第二章 總體設(shè)計 2
2.1設(shè)計要求 2
2.2方案設(shè)計 2
2.2.1方案對比 2
2.2.2方案確定 4
第三章 總體參數(shù)計算 5
3.1電動機的選擇 5
3.1.1電動機類型選擇 5
3.1.2電動機功率的確定 5
3.1.3電動機轉(zhuǎn)速的確定 6
3.2傳動比的分配 6
3.3運動和動力參數(shù)計算 6
3.3.1各軸的轉(zhuǎn)速 6
3.3.2各軸的輸入功率 6
3.3.3各軸的輸入轉(zhuǎn)矩 7
第四章 各級齒輪傳動的設(shè)計與校核 8
4.1第一級齒輪傳動 8
4.1.1齒輪的類型 8
4.1.2尺面接觸強度較合 8
4.1.3按輪齒彎曲強度設(shè)計計算 9
4.1.4幾何尺寸計算 10
4.1.5 驗算 11
4.2第二級齒輪傳動設(shè)計 12
4.2.1齒輪的類型 12
4.2.2尺面接觸強度較合 13
4.2.3按輪齒彎曲強度設(shè)計計算 14
4.2.4幾何尺寸計算 15
4.2.5驗算 16
4.3開式齒輪傳動的設(shè)計 17
4.3.1選精度等級、材料和齒數(shù) 17
4.3.2按齒面接觸疲勞強度設(shè)計 17
4.3.3按齒根彎曲強度設(shè)計 19
4.3.4幾何尺寸計算 20
第五章 軸及其軸上零件的設(shè)計與校核 22
5.1軸1 22
5.2 軸2 24
5.3軸3、軸4 26
5.4曲軸 27
5.4.1曲軸主要尺寸的確定 27
5.4.2 曲軸材料選擇及毛坯制造 28
5.4.3曲軸的平衡 29
5.4.4曲軸疲勞強度校核 31
5.5軸承及鍵的校核 36
5.6聯(lián)軸器的選用 37
5.6.1 電機軸與軸1上聯(lián)軸器的選用 37
5.6.2軸3與軸4上聯(lián)軸器的選用 37
第六章 箱體及附件的設(shè)計 38
6.1箱體的設(shè)計 38
6.1.1箱體的結(jié)構(gòu)設(shè)計 38
6.1.2油面位置及箱座高度的確定 38
6.1.3箱體結(jié)構(gòu)的工藝性 38
6.1.4附件的結(jié)構(gòu)設(shè)計 39
6.2潤滑與密封 40
6.2.1軸承潤滑 40
6.2.2齒輪潤滑 40
6.2.3密封類型的選擇 40
總 結(jié) 41
參考文獻 42
致 謝 43
摘 要
鍘刀式剪板機安裝在剪切線上,用于剪切冷狀態(tài)下的鋼板。剪切鋼板的前后端,剪出鋼板試樣及有缺陷的部分以及鋼板的最后成品尺寸。本文主要正對剪板機傳動系統(tǒng)進行設(shè)計,本次采用的傳動系統(tǒng)為電動機通過三級齒輪傳動減速驅(qū)動曲柄滑塊機構(gòu)做往復(fù)的直線運動來對鋼板進行切削。
本文首先,通過對剪板機結(jié)構(gòu)及原理進行分析,在此分析基礎(chǔ)上提出了剪板機傳動系統(tǒng)的總體結(jié)構(gòu);接著,對主要技術(shù)參數(shù)進行了計算選擇;然后,對各主要零部件進行了設(shè)計與校核;最后,通過AutoCAD制圖軟件繪制了剪板機傳動系統(tǒng)裝配圖及主要零部件圖。
通過本次設(shè)計,鞏固了大學(xué)所學(xué)專業(yè)知識,如:機械原理、機械設(shè)計、材料力學(xué)、公差與互換性理論、機械制圖等;掌握了普通機械產(chǎn)品的設(shè)計方法并能夠熟練使用AutoCAD制圖軟件,對今后的工作于生活具有極大意義。
關(guān)鍵詞:剪板機,傳動系統(tǒng),齒輪,軸
Abstract
Guillotine shears mounted shear line for steel plate shear cold state. Front and rear ends of the shear plate, cut the size of the final product and the steel samples defective part and steel sheet. This article is on the cutting drive system design, this drive system used in the motor by three gear reduction drive slider-crank mechanism reciprocating linear motion to cut steel sheet.
Firstly, by making the structure and principles of cutting analysis, this analysis presents the overall structure of the transmission system on the basis of cutting; Next, the main technical parameters were calculated selection; then, for each of the main components were Design and Verification; and finally, through the AutoCAD drawing software to draw the cutting transmission assembly drawing and major components Fig.
Through this design, the consolidation of the university is the professional knowledge, such as: mechanical principles, mechanical design, mechanics of materials, tolerances and interchangeability theory, mechanical drawing and the like; mastered the design of general machinery products and be able to skillfully use AutoCAD mapping software on the future work of great significance in life.
Keywords: Shears, Transmission, Gears, Shafts
43
第一章 緒論
在使用金屬板材較多的工業(yè)部門,都需要根據(jù)尺寸要求對板材進行切斷加工,所以剪板機就成為各工業(yè)部門使用最為廣泛的板料剪斷設(shè)備。
剪板機目前主要有以下幾種:
(1)平刃剪板機:剪切質(zhì)量較好,扭曲變形小,但剪切力大,耗能大。機械傳動的較多,該剪板機上下兩刃彼此平行,常用于軋鋼廠熱剪切初扎方坯和板坯。
(2)斜刃剪板機:分閘式剪板機和擺式剪板機,剪切質(zhì)量較前者差,有扭曲變形,但力能消耗較前者小,適用于中大型剪板機。
(3)多用途剪板機:板料折彎剪板機,即在同一臺機器上可完成兩種工藝,假期下部進行板料剪切,上部進行折彎,也有的機器前部進行剪切,后部進行板料折彎。
(4)專用剪板機:氣動剪板機大多用在剪切線上速度快,剪切次數(shù)高。
(5)數(shù)控剪板機:直接對后擋料器進行位置編程,可進行位置校正,具有多工步編程功能,可實現(xiàn)多步自動運行,完成多工步零件一次性加工,提高生產(chǎn)效率[1]。
對稱傳動剪板機是一種典型的對稱傳動的機械,主要用于剪裁各種尺寸金屬板材的直線邊緣。該設(shè)備應(yīng)用廣泛,具有結(jié)構(gòu)簡單,維修方便,經(jīng)濟實用的優(yōu)點。
本機器的工作原理:動力源電動機通過傳動系統(tǒng)傳動(三級齒輪傳動)減速驅(qū)動執(zhí)行機構(gòu)—曲柄滑塊機構(gòu),該機構(gòu)將電動機的旋轉(zhuǎn)運動轉(zhuǎn)化為往復(fù)的直線運動,在此過程中,由切刀(固定在滑塊上)來進行對板料的切削。
第二章 總體設(shè)計
2.1設(shè)計要求
設(shè)計一剪板機傳動系統(tǒng),其技術(shù)參數(shù)如下:
板材長度: 6000~12000mm
板材寬度: 1000~2500mm
板材厚度: 6~30mm
板材強度極限: 60N/mm2
板材延伸率: 17%
上刀刃傾角: 2°30′
上下刀刃間的側(cè)間間隙:1mm
刀刃磨鈍系數(shù): 1.2
曲軸半徑: 105mm
剪刀開口: 210mm
剪刀長度: 2500mm
每分鐘剪切次數(shù): 6~20次/min
2.2方案設(shè)計
剪板機主要是通過滑塊上刀片的往復(fù)直線運動來實現(xiàn)切斷功能,能實現(xiàn)這個目的主要由液壓傳動和機械傳動兩種。
剪板機主要是通過滑塊上刀片的往復(fù)直線運動來實現(xiàn)切斷功能,能實現(xiàn)這個目的主要由液壓傳動和機械傳動兩種。
2.2.1方案對比
(1)方案一:液壓傳動方案
剪板機液壓傳動系統(tǒng)原理圖如圖2-1所示,其原理:手動換向閥6推向左位(即左位接入系統(tǒng)),此時活塞在壓力油的作用下向下運動,對板料進行剪切加工,當(dāng)加工完成后,將閥6手柄推向右位(即右位接入系統(tǒng)),活塞向上運動,即刀片上抬,到了一定位置,將閥6手柄推入中位,這樣活塞就停留在此位置不動。然后剪切第二次時,重復(fù)上述操作。手動換向閥6也可改為電氣控制的換向閥,從而實現(xiàn)自動連續(xù)剪切,提高效率。
1.油箱 2.粗過濾器 3.液壓泵 4.溢流閥 5.調(diào)速閥 6.手動三位四通換向閥 7.液壓缸 8.滑塊
圖2-1 液壓傳動系統(tǒng)原理圖
液壓剪板機采用液壓傳動,使機器工作時平穩(wěn),噪聲小,安全可靠,可以進行單次連續(xù)剪切,剪板厚度也較機械傳動的厚,但是液壓系統(tǒng)是利用液體作為中間介質(zhì)來傳遞動力的,剪切力大時,油壓也相應(yīng)的高,對液壓元件的精度、強度要求也高,制造成本也相應(yīng)的較高,而且液壓系統(tǒng)不可避免的存在,泄露問題,會造成污染,油溫的變化會引起油液粘度變化,影響液壓傳動工作的平穩(wěn)性,所以適應(yīng)環(huán)境能力小[2]。另外,液壓剪板機的維修也不方便,需要掌握一定的專業(yè)知識,因此此次設(shè)計不選用此方案。
(2)方案二:機械傳動方案
(a)凸輪機構(gòu)方案
圖2-2 凸輪機構(gòu)原理圖
凸輪機構(gòu)的工作原理如圖2-2所示:主軸的轉(zhuǎn)動帶動凸輪傳動,凸輪升程時推動滑塊(即刀片)作剪切動作?;爻虝r,滑塊在彈簧的作用下上升到開始位置,準(zhǔn)備下一個動作循環(huán)。
凸輪機構(gòu)的優(yōu)點是可以根據(jù)從動件的運動規(guī)律來選擇機構(gòu)的尺寸和確定凸輪輪廓線。缺點是凸輪機構(gòu)一般用于控制機構(gòu)而不是用于執(zhí)行機構(gòu),因為其工作壓力不能太大,否則會嚴(yán)重磨損凸輪的輪廓及推桿,導(dǎo)致該機構(gòu)不能實現(xiàn)預(yù)期的動作要求,不能保證機器的穩(wěn)定性,因此該方案不予采用。
(b)曲柄滑塊機構(gòu)方案
曲柄滑塊機構(gòu)的工作原理如圖2-3所示:通過主軸轉(zhuǎn)動帶動曲柄轉(zhuǎn)動,曲柄通過連桿使滑塊作上下往復(fù)運動,實現(xiàn)剪切動作。
圖2-3 曲柄滑塊機構(gòu)原理圖
該機構(gòu)具有結(jié)構(gòu)簡單、加工容易、維修方便、經(jīng)濟實用的優(yōu)點,故采用此方案即曲柄滑塊機構(gòu)作為執(zhí)行機構(gòu)比較合適[3]。
2.2.2方案確定
綜合考慮,本次剪板機設(shè)計的總體方案為電動機經(jīng)過三級齒輪減速驅(qū)動主軸上的曲柄滑塊機構(gòu),使滑塊作往復(fù)運動,進行剪切動作,設(shè)計傳動系統(tǒng)圖如圖2-4所示。
圖2-4 傳動系統(tǒng)簡圖
第三章 總體參數(shù)計算
3.1電動機的選擇
3.1.1電動機類型選擇
本次設(shè)計所選用的電動機的類型和機構(gòu)形式應(yīng)根據(jù)電源種類、工作條件、載荷大小和性質(zhì)變化、啟動性能、制動、正反轉(zhuǎn)的頻率程度等條件來選擇。
電動機分交流電動機和直流電動機兩種。由于生產(chǎn)單位一般多采用三相交流電源,因此,無特殊要求時,均應(yīng)采用三相交流電動機。其中異步電動機是交流電動機的一種,它是把電能轉(zhuǎn)化為機械能的一種動力機械,一般以三相異步交流電動機應(yīng)用最廣泛。
JR系列電動機為封閉式三相異步電動機,能防止灰塵、鐵屑或其它雜物侵入電機內(nèi)部,效率高,耗能少,性能好,噪音低,振動小,體積小,重量輕,運行可靠,維修方便。不僅使用于水泵、鼓風(fēng)機、金屬切削機床及運輸機械,更使用于灰塵較多、水土飛濺的地方,如碾米機,磨粉機,脫殼機及其它農(nóng)業(yè)機械,礦山機械等。
根據(jù)工作環(huán)境和要求,選用JR系列電動機[4]。
3.1.2電動機功率的確定
電動機的容量選擇的是否合適,對電動機的正常工作和經(jīng)濟性都有影響。容量選的過小,不能保證工作機的正常的工作或使電動機因過載而過早的損壞;而容量選的過大,則電動機的價格較高,能力又不能充分利用,而且由于電動機經(jīng)常不滿載運行,其效率和功率因數(shù)都較低,增加電能消耗而造成能源的浪費。
該剪板機的剪切力根據(jù)諾沙里公式[5]:
= (3-1)
式中 ——剪切力
——被剪板料強度極限,實際中的板料=640N/mm2
——被剪板料延伸率,=17%
——被剪板料厚度,
——上刀刃傾斜=2°30′
——被剪部分彎曲力系數(shù),=0.95
——前刃側(cè)向間隙相對值,=0.083
——壓具影響系數(shù)x=7.7
把已知數(shù)據(jù)代入式(3-1)
=3170KN
根據(jù)表8-2-2,Q11型剪板機技術(shù)參數(shù)[1],類比樣機,選取電動機的功率為130KW。
3.1.3電動機轉(zhuǎn)速的確定
已知每分鐘剪切次數(shù):3~7次/min,
即:曲軸轉(zhuǎn)速為=3~7r/min
由于傳動由齒輪組成的。按推薦的傳動副傳動比較合理的范圍,取單級圓柱齒輪傳動比=2~6,則總傳動比合理范圍為 =8~216,則電動機轉(zhuǎn)速可選范圍為:
= · =(16~160)·=24~1512r/min
查表19.1 Y系列三相異步電動機的技術(shù)數(shù)據(jù)[6],選取JR125-6型電動機比較合適,其技術(shù)參數(shù)如下:其額定功率為130KW,級數(shù)為6,滿載轉(zhuǎn)速980r/min。
3.2傳動比的分配
通過對30×2500mm剪板機調(diào)查,其各級齒輪傳動比為:
則,總的傳動比為:
3.3運動和動力參數(shù)計算
3.3.1各軸的轉(zhuǎn)速
1軸
2軸
3軸
4軸
曲軸
3.3.2各軸的輸入功率
1軸
2軸
3軸
4軸
曲軸
3.3.3各軸的輸入轉(zhuǎn)矩
電機軸
1軸
2軸
3軸
4軸
曲軸
整理列表
軸名
功率
轉(zhuǎn)矩
轉(zhuǎn)速
傳動比
電機軸
130
1266.84
980
1軸
128.7
1254.17
980
1
2軸
123.6
4103.67
287.64
3.407
3軸
118.71
13274.95
85.4
3.368
4軸
57
6374.12
85.4
1
曲軸
54.75
33473.91
15.62
5.467
第四章 各級齒輪傳動的設(shè)計與校核
4.1第一級齒輪傳動
4.1.1齒輪的類型
1)依照設(shè)計要求,本設(shè)計高速級選用人字形圓柱齒輪傳動。
2)運轉(zhuǎn)速度不高,查《機械設(shè)計基礎(chǔ)》表11-2,選用8級精度。
3)材料選擇:材料選擇 選擇小齒輪材料為40Cr(調(diào)質(zhì))硬度為280HBS,大齒輪材料為45(調(diào)質(zhì))硬度為240HBS,兩者材料硬度差為40HBS。
(1)由表6.3查得材料的彈性影響系數(shù)
查《機械設(shè)計基礎(chǔ)》表11-5,取,。
查表11-4,取區(qū)域系數(shù)。
(2)由圖6.14按齒面硬度查得
小齒輪的接觸疲勞強度極限
大齒輪的接觸疲勞強度極限
(3)由式6.11計算應(yīng)力循環(huán)次數(shù)
(4)由圖6.16查得接觸疲勞強度壽命系數(shù)
(5)計算接觸疲勞強度許用應(yīng)力
取失效概率為1%,安全系數(shù)為S=1.0,由式10-12得
4)螺旋角:8°<β<20°,初選β=15°
5)齒數(shù):初選小齒輪齒數(shù):;
大齒輪齒數(shù):
4.1.2尺面接觸強度較合
(1)取載荷
(2)兩支承相對小齒輪非對稱分布,故取
(3), ,
(4)計算模數(shù)
(5)
(6)計算齒輪圓周速度
4.1.3按輪齒彎曲強度設(shè)計計算
因為所選材料硬小于350HBS,所以為軟齒面。
1)法向模數(shù)
2)查《機械設(shè)計基礎(chǔ)》表11-3,得載荷系數(shù)k=1.3
3)查《機械設(shè)計基礎(chǔ)》表11-6,得齒寬系數(shù)
由圖6.15查得
小齒輪的彎曲疲勞強度極限
大齒輪的彎曲疲勞強度極限
由圖6.16查得彎曲疲勞壽命系數(shù)
計算彎曲疲勞許用應(yīng)力
取失效概率為1%,安全系數(shù)為S=1.3,由式10-13得
4)小齒輪上的轉(zhuǎn)矩
5)齒形系數(shù)
查《機械設(shè)計基礎(chǔ)》圖11-8得:,
查《機械設(shè)計基礎(chǔ)》圖11-9得:,
因為
和比較
大齒輪的數(shù)值較大。
6)法向模數(shù)
對比計算結(jié)果,由齒面接觸疲勞強度計算的模數(shù)大于由齒根彎曲疲勞強度計算的模數(shù),取,圓整后就近取標(biāo)準(zhǔn)模數(shù)已可滿足彎曲強度。但為了同時滿足接觸疲勞強度,需按接觸疲勞強度算得的分度圓直徑來計算應(yīng)有的齒數(shù),于是有:
,圓整取
則,圓整取
4.1.4幾何尺寸計算
1)中心距
圓整為740mm。
2)確定螺旋角:
3)確定齒輪的分度圓直徑:
4)齒輪寬度:
圓整為270mm
圓整后??;。
6)齒輪尺寸表:
將幾何尺寸匯于表:
序號
名稱
符號
計算公式及參數(shù)選擇
1
法相模數(shù)
2
螺旋角
3
分度圓直徑
4
齒頂高
5
齒根高
6
全齒高
7
頂隙
8
齒頂圓直徑
9
齒根圓直徑
10
中心距
740mm
4.1.5 驗算
(1)齒面接觸強度
可知是安全的
校核安全。
(2)齒面彎曲強度
校核安全
4.2第二級齒輪傳動設(shè)計
4.2.1齒輪的類型
1)依照設(shè)計要求,本設(shè)計中間級選用斜齒圓柱齒輪傳動。
2)搓絲機為一般工作機器,運轉(zhuǎn)速度不高,查《機械設(shè)計基礎(chǔ)》表11-2,選用8級精度。
3)材料選擇:材料選擇 選擇小齒輪材料為45(調(diào)質(zhì))硬度為280HBS,大齒輪材料為45(調(diào)質(zhì))硬度為240HBS,兩者材料硬度差為40HBS。
(1)由表6.3查得材料的彈性影響系數(shù)
查《機械設(shè)計基礎(chǔ)》表11-5,取,。
查表11-4,取區(qū)域系數(shù)。
(2)由圖6.14按齒面硬度查得
小齒輪的接觸疲勞強度極限
大齒輪的接觸疲勞強度極限
(3)由式6.11計算應(yīng)力循環(huán)次數(shù)
(4)由圖6.16查得接觸疲勞強度壽命系數(shù)
(5)計算接觸疲勞強度許用應(yīng)力
取失效概率為1%,安全系數(shù)為S=1.25,由式10-12得
4)螺旋角:8°<β<20°,初選β=15°
5)齒數(shù):初選小齒輪齒數(shù):;
大齒輪齒數(shù):
4.2.2尺面接觸強度較合
(1)取載荷
(2)兩支承相對小齒輪非對稱分布,故取
(3), ,
2、計算模數(shù)
3、
4、計算齒輪圓周速度
4.2.3按輪齒彎曲強度設(shè)計計算
因為所選材料硬小于350HBS,所以為軟齒面。
1)法向模數(shù)
2)查《機械設(shè)計基礎(chǔ)》表11-3,得載荷系數(shù)k=1.3
3)查《機械設(shè)計基礎(chǔ)》表11-6,得齒寬系數(shù)
由圖6.15查得
小齒輪的彎曲疲勞強度極限
大齒輪的彎曲疲勞強度極限
由圖6.16查得彎曲疲勞壽命系數(shù)
計算彎曲疲勞許用應(yīng)力
取失效概率為1%,安全系數(shù)為S=1.3,由式10-12得
4)小齒輪上的轉(zhuǎn)矩
5)齒形系數(shù)
查《機械設(shè)計基礎(chǔ)》圖11-8得:,
查《機械設(shè)計基礎(chǔ)》圖11-9得:,
因為
和比較
大齒輪的數(shù)值較大。
6)法向模數(shù)
對比計算結(jié)果,由齒面接觸疲勞強度計算的模數(shù)大于由齒根彎曲疲勞強度計算的模數(shù),取,圓整取標(biāo)準(zhǔn)模數(shù)已可滿足彎曲強度.但為了同時滿足接觸疲勞強度,需按接觸疲勞強度算得的分度圓直徑來計算應(yīng)有的齒數(shù),于是由
,取19
則取64
4.2.4幾何尺寸計算
1)中心距
圓整為860mm。
2)確定螺旋角:
3)確定齒輪的分度圓直徑:
4)齒輪寬度:
圓整為315mm
圓整后??;。
5)齒輪尺寸表:將幾何尺寸匯于表:
序號
名稱
符號
計算公式及參數(shù)選擇
1
法相模數(shù)
2
螺旋角
3
分度圓直徑
4
齒頂高
5
齒根高
6
全齒高
7
頂隙
8
齒頂圓直徑
9
齒根圓直徑
10
中心距
860mm
4.2.5驗算
(1)齒面接觸強度
可知是安全的
校核安全。
(2)齒面彎曲強度
校核安全
4.3開式齒輪傳動的設(shè)計
前述算得,,轉(zhuǎn)速,傳動比
4.3.1選精度等級、材料和齒數(shù)
采用7級精度由表6.1選擇小齒輪材料為40Cr(調(diào)質(zhì)),硬度為280HBS,大齒輪材料為45鋼(調(diào)質(zhì)),硬度為240HBS。
選小齒輪齒數(shù)
大齒輪齒數(shù)取
4.3.2按齒面接觸疲勞強度設(shè)計
由設(shè)計計算公式進行試算,即
1) 確定公式各計算數(shù)值
(1)試選載荷系數(shù)
(2)計算小齒輪傳遞的轉(zhuǎn)矩
(3)小齒輪相對兩支承非對稱分布,選取齒寬系數(shù)
(4)由表6.3查得材料的彈性影響系數(shù)
(5)由圖6.14按齒面硬度查得
小齒輪的接觸疲勞強度極限
大齒輪的接觸疲勞強度極限
(6)由式6.11計算應(yīng)力循環(huán)次數(shù)
(7)由圖6.16查得接觸疲勞強度壽命系數(shù)
(8)計算接觸疲勞強度許用應(yīng)力
取失效概率為1%,安全系數(shù)為S=1,由式10-12得
(9)計算
試算小齒輪分度圓直徑,代入中的較小值
計算圓周速度v
計算齒寬b
計算齒寬與齒高之比b/h
模數(shù)
齒高
計算載荷系數(shù)K
根據(jù),7級精度,查得動載荷系數(shù)
假設(shè),由表查得
由于載荷中等振動,由表5.2查得使用系數(shù)
由表查得
查得
故載荷系數(shù)
(10)按實際的載荷系數(shù)校正所算得的分度圓直徑,由式可得
(11)計算模數(shù)m
4.3.3按齒根彎曲強度設(shè)計
彎曲強度的設(shè)計公式為
(1)確定公式內(nèi)的計算數(shù)值
由圖6.15查得
小齒輪的彎曲疲勞強度極限
大齒輪的彎曲疲勞強度極限
由圖6.16查得彎曲疲勞壽命系數(shù)
計算彎曲疲勞許用應(yīng)力
取失效概率為1%,安全系數(shù)為S=1.3,得
計算載荷系數(shù)
(2)查取齒形系數(shù)
由表6.4查得
(3)查取應(yīng)力校正系數(shù) 由表6.4查得
(4)計算大小齒輪的,并比較
大齒輪的數(shù)據(jù)大
(5)設(shè)計計算
對比計算結(jié)果,由齒面接觸疲勞強度計算的模數(shù)m大于由齒根彎曲疲勞強度計算的模數(shù),可取有彎曲強度算得的模數(shù)22.73mm,并圓整取第一標(biāo)準(zhǔn)模數(shù)值m=24mm,并按接觸強度算得的分度圓直徑
算出小齒輪齒數(shù) 取
大齒輪齒數(shù)取
4.3.4幾何尺寸計算
(1)計算分度圓直徑
(2)計算中心距
(3)計算齒寬寬度取
綜合整理兩級齒輪參數(shù)如下表:
序號
名稱
符號
參數(shù)選擇
小齒輪
大齒輪
1
齒數(shù)
Z
15
82
2
模數(shù)
m
24mm
3
分度圓直徑
4
齒頂高
5
齒根高
6
全齒高
7
頂隙
8
齒頂圓直徑
9
齒根圓直徑
10
齒寬
11
中心距
第五章 軸及其軸上零件的設(shè)計與校核
5.1軸1
(1)求輸入軸上的功率、轉(zhuǎn)速和轉(zhuǎn)矩
=128.7kW;=980r/min;=1254.17N·m
(2)初步確定軸的最小直徑
先初步估算軸的最小直徑。選取軸的材料為45鋼(調(diào)質(zhì))
根據(jù)課本表15-3,取得:
因軸上有兩個鍵槽,故直徑增大5%—10%,取=62mm 左右。且該段與聯(lián)軸器配合,故選定:
=70mm
(3)軸各段各段尺寸的確定
為了滿足聯(lián)軸器的軸向定位,1-2軸段右端需制出一軸肩,故取2-3段的直徑
=82mm
初步選擇滾動軸承。因軸承同時受有徑向力和軸向力,故選用圓柱滾子軸承,參照工作要求并根據(jù)=82mm ,由指導(dǎo)書表15-1,初步選取22系列, 32217GB/T 276,其尺寸為
,
故
而為了利于固定
由指導(dǎo)書表15-1查得
取安裝齒輪處的軸段7-8的直徑
齒輪的左端采用軸肩定位。
已知齒輪輪轂的寬度為275mm,應(yīng)使套筒端面可靠地壓緊軸承,由套筒長度,擋油環(huán)長度以及略小于輪轂寬度的部分組成,故
為使套筒端面可靠地壓緊軸承,5-6段應(yīng)略短于軸承寬度,故取
軸承端蓋的總寬度為30mm。根據(jù)軸承端蓋的裝拆及便于對軸承添加潤滑油的要求,求得端蓋外端面與半聯(lián)軸器右端面間的距離
故取
至此,已經(jīng)初步確定了軸的各段直徑和長度。
(4)軸上零件的周向定位
齒輪、半聯(lián)軸器與軸的周向定位均采用平鍵連接
軸與半聯(lián)軸器之間的平鍵,按:=70mm
查得平鍵截面
長130mm
為保證齒輪、半聯(lián)軸器與軸配合有良好的對中性,故選擇半聯(lián)軸器與軸配合為,齒輪輪轂與軸的配合為;
滾動軸承與軸的周向定位是由過渡配合來保證的,此處選軸的尺寸公差為m6。
確定軸上圓角和倒角尺寸參考表15-2,取軸端倒角為,其他均為R=1.6
(5)求軸上的載荷
根據(jù)軸的計算簡圖作出軸的彎矩圖和扭矩圖。從軸的結(jié)構(gòu)圖以及彎矩和扭矩圖可以看出截面B是軸的危險截面。先計算出截面B處的MH、MV及M的值列于下表。
載荷
水平面H
垂直面V
支反力F
B截面彎矩M
總彎矩
扭矩
(6) 按彎扭合成應(yīng)力校核軸的強度
根據(jù)式(15-5)及上表中的數(shù)據(jù),以及軸單向旋轉(zhuǎn),扭轉(zhuǎn)切應(yīng)力,取,軸的計算應(yīng)力
已選定軸的材料為45Cr,調(diào)質(zhì)處理。由表15-1查得。因此,故安全。
5.2 軸2
(1)軸上的功率P2,轉(zhuǎn)速n2和轉(zhuǎn)矩T2
,,
(2)初步確定軸的最小直徑
先按式初步估算軸的最小直徑。選取軸的材料45鋼,調(diào)質(zhì)處理。根據(jù)機械設(shè)計表11.3,取,于是得:
該處開有鍵槽故軸徑加大5%~10%,且Ⅲ軸的最小直徑顯然是離合器處的直徑。為了使所選的軸直徑與離合器器的孔徑相適應(yīng),故??;長度為。
(3)軸的結(jié)構(gòu)設(shè)計
根據(jù)軸向定位的要求確定軸的各段直徑和長度
(a)為了滿足離合器的軸向定位的要求,ⅤⅡ-ⅤⅢ軸段左端需制出軸肩,故?、酡?ⅤⅡ段的直徑。
(b) 初步選擇滾動軸承。因軸承同時受有徑向力和軸向力的作用,故選用單列圓柱滾子軸承。根據(jù),查機械設(shè)計師手冊(軟件版)選取0基本游隙組,標(biāo)準(zhǔn)精度級的圓柱滾子軸承32224,其尺寸為,故,而,滾動軸承采用套筒進行軸向定位,軸肩高度,因此,取.
(c)取安裝齒輪處的軸的直徑;齒輪左端與左軸承之間采用套筒定位。已知齒輪輪轂的寬度為320mm,為了使套筒端面可靠地壓緊齒輪,此軸段應(yīng)略短于輪轂寬度,故取。齒輪的右端采用軸肩定位,軸肩高度,取,則,。因Ⅱ、Ⅲ兩軸在箱體內(nèi)的長度大致相等,取, 。。。
(4)軸上零件的周向定位
查機械設(shè)計表,聯(lián)接圓柱齒輪的平鍵截面
(5)求軸上的載荷
對于32224型圓柱滾子軸承,
載荷
水平面
垂直面
支反力F
彎矩M
總彎矩
扭矩T
(6)按彎扭合成應(yīng)力校核軸的強度
進行校核時,通常只校核軸上承受最大彎矩和扭矩的截面,即安裝齒輪處,取,軸的計算應(yīng)力:
前已選定軸的材料為45鋼,調(diào)質(zhì)處理,由機械設(shè)計,
查得,因此,安全。
計得:,,根據(jù)軸的計算簡圖作出軸的彎矩圖和扭矩圖。如下圖所示。
5.3軸3、軸4
設(shè)計過程同軸1、軸2此處不再一一復(fù)述,設(shè)計結(jié)果如下:
(1)軸3
軸3的結(jié)構(gòu)及尺寸如下:
(2)軸4
軸4的結(jié)構(gòu)及尺寸如下:
5.4曲軸
5.4.1曲軸主要尺寸的確定
軸上的功率P5,轉(zhuǎn)速n5和轉(zhuǎn)矩T5
,,
(1)最小直徑的確定
初步確定軸的最小直徑
先按式初步估算軸的最小直徑。選取軸的材料45鋼,調(diào)質(zhì)處理。根據(jù)機械設(shè)計表11.3,取,于是得:
因軸上有鍵槽,故直徑增大5%—10%,取=180mm 左右。故取=180mm
(2)曲柄銷的直徑和長度
在考慮曲軸軸頸的粗細(xì)時,首先是確定曲柄銷的直徑。在曲軸設(shè)計中,一般趨向于采用較大的值,以降低曲柄銷的比壓,提高連桿軸承工作的可靠性,提高曲軸的剛度。但是,曲柄銷加粗伴隨著連桿大頭加大,使不平衡旋轉(zhuǎn)質(zhì)量的離心力增大,對曲軸及軸承的工作帶來不利。因為隨曲柄銷直徑增大帶來的軸系自振頻率增加,會被旋轉(zhuǎn)質(zhì)量增加引起的自振頻率下降所抵消,可能增加扭轉(zhuǎn)振動的危害。此外,曲柄銷直徑增大也會增加軸承摩擦功率損失,導(dǎo)致軸承溫度升高,增加潤滑油熱負(fù)荷。為此,曲柄銷直徑不應(yīng)取得較大。曲柄銷的長度是再選定的基礎(chǔ)上考慮的。
初步選取
曲柄銷的直徑:=200mm;
曲柄銷的長度=230mm
(3)主軸頸的直徑和長度
從軸承負(fù)荷出發(fā),主軸頸可以比曲柄銷細(xì)些,因為主軸承最大負(fù)荷小于連桿軸承。但是為了最大限度地增加曲軸的剛度,加粗主軸徑是有很大好處的。因為第一,加粗主軸徑不同于加粗曲柄銷那樣有很多副作用,加粗主軸頸能增加曲柄軸頸的重疊度,從而提高曲軸剛度,但幾乎不增加曲軸的轉(zhuǎn)動慣量,故可提高自振頻率,減輕扭振危害;第二,加粗主軸頸后可以相對縮短其長度,從而給加厚曲柄臂,提高其強度提供可能。
根據(jù)表3-1,初步選取
主軸頸直徑=200mm;
主軸頸長度=58mm。
(4)曲柄臂
曲柄臂是曲軸中最薄弱的部分之一,它在曲柄平面內(nèi)的抗彎剛度和強度都較差。實踐表明:由交變彎曲應(yīng)力造成的曲柄臂斷裂是曲軸的主要損壞型式。曲柄臂應(yīng)選擇適當(dāng)?shù)暮穸?,寬度,以使曲軸有足夠的剛度和強度。曲柄形狀應(yīng)合理,以改善應(yīng)力分布?,F(xiàn)代高速汽油機曲柄的形狀大多采用橢圓形和圓形。試驗證明:橢圓形曲柄具有最好的彎曲和扭轉(zhuǎn)剛度。其優(yōu)點是盡量去掉了受力小或不受力的部分,其重量減輕,應(yīng)力分布均勻。但加工方法較復(fù)雜,采用模鍛或鑄造的方法可以直接成型。
根據(jù)表3-1, 初步選取
曲柄臂厚度h=(0.4~0.6)D=80~120mm 取h=100mm;
曲柄臂寬度b=(0.5~1.1)D=100~220mm 取b=220mm。
(5)曲軸圓角
曲軸主軸頸和曲柄臂連接的圓角稱為主軸頸圓角,曲柄銷和曲柄臂連接的圓角稱為曲柄銷圓角。
由于曲柄銷圓角和主軸頸圓角是曲軸應(yīng)力最大的部位,且應(yīng)力沿圓角輪廓分布也極不均勻,故圓角的輪廓設(shè)計十分重要。
曲軸圓角半徑r應(yīng)足夠大,根據(jù)表3-1, r/=0.025~0.04,r=2.2~3.52mm,圓角半徑過小會使應(yīng)力集中嚴(yán)重。為了增大曲軸圓角半徑,且不縮短軸頸有效工作長度,可采用沉割圓角,設(shè)計沉割圓角時應(yīng)該保證曲柄臂有足夠厚度。曲軸圓角也可由半徑不同的二圓弧和三圓弧組成。當(dāng)各段圓弧半徑選擇適當(dāng)時可提高曲軸疲勞強度,增加軸頸有效承載長度。
本次設(shè)計遵循以上原則,選取圓角半徑 r=5mm。
5.4.2 曲軸材料選擇及毛坯制造
常用的曲軸材料有可鍛鑄鐵,合金鑄鐵,球墨鑄鐵,碳素鋼和合金鋼等,相應(yīng)的毛坯也分為鑄造與鍛造。
鍛造曲軸一般采用中碳鋼或者合金鋼制造,毛坯生產(chǎn)需要大型鍛壓設(shè)備,雖然毛坯尺寸比較精確,減少了加工余量,提高了材料利用率,此外,鍛造能夠使材料的金屬纖維成方向性排列,纖維方向和曲軸形狀大致相符,這大大提高了曲軸的抗拉強度和彎曲疲勞強度。但是鍛造曲軸成本過高,大約是球鐵曲軸的3-7倍。
雖然鑄造曲軸主要是球鐵曲軸有很多缺點,例如彎曲疲勞強度比較低,較容易發(fā)生斷裂,相同尺寸的球鐵曲軸與鍛造曲軸相比,剛度差。但它的優(yōu)點也相當(dāng)明顯,例如球墨鑄鐵曲軸經(jīng)正火處理后的機械性能已接近蔌超過一般的中碳鋼,盡管鋼的疲勞強度比球墨鑄鐵高,但曲軸的結(jié)構(gòu)復(fù)雜,鋼曲軸難免會有油孔、過渡圓角和材質(zhì)上留有缺陷面造成應(yīng)力集中,從面降低了曲軸的疲勞強度。球鐵可以鑄造出復(fù)雜的曲軸形狀,使其應(yīng)力分布均勻,且球墨鑄鐵對缺口敏感度低、變形小,使球墨鑄鐵曲軸的實際彎曲的扭轉(zhuǎn)疲勞強度與正火中碳鋼相近。球鐵曲軸的耐磨性好,吸振能力強,有較好的自潤滑和抗氧化性能。
綜上分析,本次設(shè)計采用球墨鑄鐵曲軸。
5.4.3曲軸的平衡
(1)曲軸的平衡性分析
對曲曲軸軸平衡性的分析可以采用兩種方法,矢量圖法和數(shù)學(xué)分析法,此次設(shè)計中我采用的是數(shù)學(xué)分析法:
(a)分析
因為所以
取通過第二氣缸中心線且垂直于曲軸中心線的平面為力矩的計算基準(zhǔn)平面。
令
得即
因為和的公式形態(tài)一樣
所以
可知,
令 得2α=30°
即,
由上得知一、二級往復(fù)慣性力矩的正、反轉(zhuǎn)矢量
(b)慣性力矩的平衡方法
一般,只采用曲軸附加偏角(或扇形)平衡塊的方法將全部平衡掉。其中,K值需要與汽油機的配套裝置一道試驗確定。對一、二級往復(fù)慣性力,不另添置平衡軸,而讓其自行存在。由此收起的振動是許可的。為了獲得良好的外部平衡性能,應(yīng)對帶平衡塊的曲軸進行仔細(xì)地靜、動平衡,并把活塞組、連桿組的重量嚴(yán)格控制在誤差范圍內(nèi)。
(2)曲軸平衡塊的布置方式
曲軸平衡塊的作用是用來平衡曲軸不平衡的旋轉(zhuǎn)慣性力和旋轉(zhuǎn)慣性力矩,有時也可以平衡往復(fù)慣性力及其力矩,并可以減速小主軸承的負(fù)荷。隨著汽油機轉(zhuǎn)速的提高,多數(shù)離心慣性力和離心慣性力矩已自行平衡的曲軸也配置平衡塊,這主要是為了減輕主軸承的最大負(fù)荷,保證軸承有良好的潤滑條件,減小曲軸和曲軸箱所受的離心慣性力矩。但曲軸配置平衡塊后,重量增加,制造工藝復(fù)雜,曲軸系統(tǒng)扭轉(zhuǎn)振動自振頻率降低。因此,應(yīng)根據(jù)轉(zhuǎn)速,曲軸結(jié)構(gòu),曲柄排列,軸承負(fù)荷以及對平衡的要求等因素綜合考慮是否配置平衡塊。一般低速汽油機不需要配置平衡塊,高度汽油機則需要配置平衡塊。平衡方案的選擇,平衡塊重量的計算與布置,應(yīng)該仔細(xì)考慮。
平衡塊的重心應(yīng)盡量遠(yuǎn)離曲軸中心線,以提高平衡效果。但平衡塊一般不超過曲軸旋轉(zhuǎn)所掃過的范圍。平衡塊厚度一般與曲柄臂相同。
5.4.4曲軸疲勞強度校核
本計算采用Ricardo計算方法,該計算方法有兩點假設(shè)。
曲軸的每一曲拐是相互獨立的,不受曲軸其他部分受力的影響,并以
簡支梁的形式支撐在主軸承上。
曲軸所受力是以點負(fù)荷的形式作用在曲軸上的。如圖5-1
圖5-1 曲拐受力分析圖
(1)彎曲應(yīng)力計算
1)曲軸受力計算
(a)壓縮上止點時的曲軸作用力:
(5-2)
式中,—活塞連桿組往復(fù)質(zhì)量力;—活塞連桿組旋轉(zhuǎn)質(zhì)量力;
(b)燃?xì)庾饔昧Γ?
則
(c)排氣上止點時的曲軸作用力:
2)單個曲拐危險截面上的彎矩
(a)圓角處
(b)連桿軸頸中央油孔處
式中,、、、分別為曲拐危險截面的最大和最小彎矩。
3)名義彎曲應(yīng)力
,
式中,—為彎矩,
、為截面的最大、最小名義彎曲應(yīng)力。
(a)圓角處
(b)連桿軸頸中央油孔處
4)名義彎曲平均應(yīng)力及名義應(yīng)力幅為
,
(a)圓角處
(b)連桿軸頸中央油孔處
5)彎曲應(yīng)力
,;
式中,—應(yīng)力集中系數(shù),
、—為彎曲平均應(yīng)力及彎曲應(yīng)力幅;
根據(jù)理論應(yīng)力集中系數(shù)由式(5-3)計算。
式中, ;
式中,—連桿軸徑,—曲柄臂厚度。
式中,—主軸頸直徑。
則
,則。
=
圓角處
=
桿軸頸中央油孔處
取連桿軸頸中央油孔處的應(yīng)力集中系數(shù),帶入(5-4)得,則
(2)切應(yīng)力計算
1)扭矩計算
式中,—為發(fā)動機平均扭矩;
將已知條件代入得;最大扭矩
式中為系數(shù),兩缸機取=10。最小扭矩
2)名義應(yīng)力
連桿軸頸的抗彎截面系數(shù)
, =63,則
式中,,—分別為名義最大,最小切應(yīng)力。
名義平均切應(yīng)力及名義切應(yīng)力幅分別為
3)切應(yīng)力
(a)圓角處
理論應(yīng)力集中系數(shù)
式中,為圓角半徑,為重疊度,連桿軸頸直徑。將代入式(5-4)中得,,則切應(yīng)力集中系數(shù)
則
式中,、—為平均切應(yīng)力及切應(yīng)力幅。
(b)連桿軸頸中央油孔處
理論應(yīng)力集中系數(shù),將其代入式(5-4)中得,,
切應(yīng)力集中系數(shù) 則
根據(jù)以上計算數(shù)值參考經(jīng)驗數(shù)值[14] 此次設(shè)計的曲軸可采用材料40Cr此材料的強度完全滿足以上要求。
5.5軸承及鍵的校核
已輸入軸為例,其他各軸校核過程類似不一一復(fù)述:
(1)輸入軸的軸承
1)按承載較大的滾動軸承選擇其型號,因支承跨距不大,故采用兩端固定式軸承組合方式。軸承類型選為圓柱滾子軸承,軸承的預(yù)期壽命取為:L'h=29200h
由上面的計算結(jié)果有軸承受的徑向力為Fr1=340.43N,
軸向力為Fa1=159.90N,
2)初步選擇滾動軸承型號為30206,其基本額定動載荷為Cr=51.8KN,基本額定靜載荷為C0r=63.8KN。
3).徑向當(dāng)量動載荷
動載荷為,查得,則有
,滿足要求。
(2)輸入軸的鍵
1)選擇鍵聯(lián)接的類型和尺寸
輸入軸處選用單圓頭平鍵,尺寸為
圓柱齒輪處選用普通平頭圓鍵,尺寸為。
2)校核鍵聯(lián)接的強度
鍵、軸材料都是鋼,由機械設(shè)計查得鍵聯(lián)接的許用擠壓力為
鍵的工作長度,
,合適
,合適
5.6聯(lián)軸器的選用
5.6.1 電機軸與軸1上聯(lián)軸器的選用
根據(jù)前面計算,輸入軸最小直徑:取
查機械手冊,根據(jù)軸徑和計算轉(zhuǎn)矩選用彈性柱銷聯(lián)軸器:
聯(lián)軸器轉(zhuǎn)矩計算
查表課本14-1, K=1.3,則
啟動載荷為名義載荷的1.25倍,則
按照計算轉(zhuǎn)矩應(yīng)小于聯(lián)軸器公稱轉(zhuǎn)矩的條件,查手冊選擇聯(lián)軸器型號為選用YL13(Y型)凸緣聯(lián)軸器,其允許最大扭矩[T]=2500,許用最高轉(zhuǎn)速 n=2600,半聯(lián)軸器的孔徑d=70,孔長度l=142mm,半聯(lián)軸器與軸配合的轂孔長度L1=140。
5.6.2軸3與軸4上聯(lián)軸器的選用
根據(jù)前面計算,3軸最小直徑:取
查機械手冊,根據(jù)軸徑和計算轉(zhuǎn)矩選用彈性柱銷聯(lián)軸器:
聯(lián)軸器轉(zhuǎn)矩計算
查表課本14-1, K=1.3,則
啟動載荷為名義載荷的1.25倍,則
按照計算轉(zhuǎn)矩應(yīng)小于聯(lián)軸器公稱轉(zhuǎn)矩的條件,查手冊選擇聯(lián)軸器型號為選用YL20(Y型)凸緣聯(lián)軸器,其允許最大扭矩[T]=12500,許用最高轉(zhuǎn)速 n=1700,半聯(lián)軸器的孔徑d=120,孔長度l=202mm,半聯(lián)軸器與軸配合的轂孔長度L1=200。
第六章 箱體及附件的設(shè)計
6.1箱體的設(shè)計
箱體是支承和固定軸系部件、保證傳動零件正常嚙合、良好潤滑和密封的基礎(chǔ)零件,因此,應(yīng)具有足夠的強度和剛度。為提高箱體強度,采用鑄造的方法制造。
為便于軸系部件的安裝和拆卸,箱體采用剖分式結(jié)構(gòu),由箱座和箱蓋組成,剖分面取軸的中心線所在平面,箱座和箱蓋采用普通螺栓連接,圓柱銷定位。
箱體是支承和固定軸系部件、保證傳動零件正常嚙合、良好潤滑和密封的基礎(chǔ)零件,因此,應(yīng)具有足夠的強度和剛度。為提高箱體強度,采用鑄造的方法制造。
6.1.1箱體的結(jié)構(gòu)設(shè)計
首先保證足夠的箱體壁厚,箱座和箱蓋的壁厚取。
其次,為保證箱體的支承剛度,箱體軸承座處要有足夠的厚度,并設(shè)置加強肋,且選用外肋結(jié)構(gòu)。為提高軸承座孔處的聯(lián)接剛度,座孔兩側(cè)的連接螺栓應(yīng)盡量靠近(以避免與箱體上固定軸承蓋的螺紋孔干涉為原則)。為提高聯(lián)接剛度,在軸承座旁聯(lián)接螺栓處做出凸臺,要有一定高度,以留出足夠的扳手空間。由于減速器上各軸承蓋的外徑不等,各凸臺高度設(shè)計一致。
另外,為保證箱座與箱蓋的聯(lián)接剛度,箱蓋與箱座聯(lián)接凸緣應(yīng)有較大的厚度。
為保證箱體密封,除箱體剖分面聯(lián)接凸緣要有足夠的寬度外,合理布置箱體凸緣聯(lián)接螺栓,采用對稱均勻布置,并不與吊耳、吊鉤和定位銷等發(fā)生干涉。
6.1.2油面位置及箱座高度的確定
對于圓柱齒輪,通常取浸油深度為一個齒高,對于多級傳動中的低速級大齒輪,其浸油深度不得超過其分度圓半徑的1/3。為避免傳動零件傳動時將沉積在油池底部的污物攪起,造成齒面磨損,應(yīng)使大齒輪齒頂圓距油齒底面的的距離不小于30~50mm。取45mm。
6.1.3箱體結(jié)構(gòu)的工藝性
由于采用鑄造箱體,所以要注意鑄造的工藝要求,例如注意力求壁厚均勻、過渡平緩,外形簡單;考慮液態(tài)金屬的流動性,箱體壁厚不應(yīng)過薄,砂形鑄造圓角半徑??;為便于造型時取模,鑄件表面沿拔模方向設(shè)計成~的拔模斜度,以便拔模方便。箱體與其他零件的結(jié)合處,如箱體軸承座端面與軸承蓋、窺視孔與視孔蓋、螺塞等處均做出凸臺,以便于機加工。
設(shè)計箱體結(jié)構(gòu)形狀時,應(yīng)盡量減小機械加工面積,減少工件和刀鋸的的調(diào)整次數(shù)。例如同一軸心線上的兩軸承座孔的直徑應(yīng)盡量一致,以便鏜孔并保證鏜孔精度,取兩軸承座孔的直徑相同。箱體的加工面與非加工面必須嚴(yán)格分開,加工處做出凸臺()。螺栓頭部或螺母接觸處做出沉頭座坑。箱體形狀力求均勻、美觀。
6.1.4附件的結(jié)構(gòu)設(shè)計
要設(shè)計啟蓋螺釘,其上的螺紋長度要大于箱蓋聯(lián)接凸緣的厚度,釘桿端部要做成圓柱形,加工成半圓形,以免頂壞螺紋。
為了保證剖分式箱體軸承座孔的加工與裝配精度,在箱體聯(lián)接凸緣的長度方向兩端各設(shè)一圓柱定位銷。兩銷間的距離盡量遠(yuǎn),以提高定位精度。定位銷直徑一般取,取,長度應(yīng)大于箱蓋和箱座聯(lián)接凸緣的總厚度,以利于裝拆。
箱體相關(guān)尺寸匯總?cè)缦拢?
名 稱
代號
一級齒輪減速器
計算結(jié)果
機座壁厚
δ
0.04a+3mm≥8mm
30
機蓋壁厚
δ1
0.85δ
30
機座凸緣厚度
b
1.5δ
25
機蓋凸緣厚度
b1
1.5δ1
25
機座底凸緣厚度
b2
2.5δ
30
地腳螺釘直徑
df
0.036a+12mm
16
地腳螺釘數(shù)目
n
4
軸承旁連接螺栓直徑
d1
0.75 df
16
機座與機蓋連接螺栓直徑
d2
(0.5~0.6) df
12
連接螺栓d2的間距
l
150~200mm
軸承端螺釘直徑
d3
(0.4~0.5) df
6
窺視孔蓋螺釘直徑
d4
(0.3~0.4) df
5
定位銷直徑
d
(0.7~0.8) d2
6
df、d1 、d2至外機壁距離
c1
見表2
22,16,13
df 、d2至緣邊距離
c2
見表2
20,11
軸承旁凸臺半徑
R1
c2
20
凸臺高度
h
根據(jù)低速軸承座外徑確定
50
外機壁到軸承端面距離
l1
c1+ c2+(5~8)mm
48
內(nèi)機壁到軸承端面距離
l2
δ+ c1+ c2+(5~8)mm
56
齒頂圓與內(nèi)機壁距離
△1
≥1.2δ
30
齒輪端面與內(nèi)機壁的距離
△2
≥δ
50
機座肋厚
m
m≈0.85δ
7
軸承端蓋外徑
D2
軸承座孔直徑+(5~5.5) d3
125
軸承端蓋凸緣厚度
e
(1~1.2) d3
10
軸承旁連接螺栓距離
s
盡量靠近,以Md1和Md3不發(fā)生干涉為準(zhǔn)
6.2潤滑與密封
6.2.1軸承潤滑
輸入軸上軸承:
輸出軸上軸承:
軸承均采用脂潤滑。選用通用鋰基潤滑脂(GB7324-87),牌號為ZGL—1。其有良好的耐水性和耐熱性。適用于-20°至120°寬溫度范圍內(nèi)各種機械的滾動軸承、滑動軸承及其他摩擦部位的潤滑。潤滑脂的裝填量不宜過多,一般不超過軸承內(nèi)部空間容積的1/3~2/3。
6.2.2齒輪潤滑
齒輪的潤滑方法采用浸油潤滑。在齒輪傳動時,就把潤滑油帶到嚙合的齒面上,同時也將油甩到箱壁上,借以散熱。齒輪浸入油中油的深度不宜超過高速級1/2,亦不應(yīng)小于1/4。為避免齒輪轉(zhuǎn)動時將沉積在油池底部的污物攪起,造成齒面磨損,應(yīng)使大齒輪齒頂距油池底面的距離不小于30~50mm?,F(xiàn)取為
6.2.3密封類型的選擇
(1)軸外伸處的密封設(shè)計
為防止?jié)櫥瑒┩饴┘巴饨绲幕覊m、水分和其他雜質(zhì)滲入,造成軸承磨損或腐蝕,應(yīng)設(shè)置密封裝置。軸承為脂潤滑,選用氈圈油封,材料為半粗羊毛氈。
(2)剖分面的密封設(shè)計
在剖分面上涂水玻璃,以防止漏油。
總 結(jié)
畢業(yè)設(shè)計是對大學(xué)中所學(xué)知識的回顧,是對以往所學(xué)知識的綜合運用,鍛煉了我們的獨立思考能力、獨立解決工程實際問題的能力、畫圖能力,更是從課本中的理論知識到生產(chǎn)實際的轉(zhuǎn)變。在這之前,雖然經(jīng)過四年的學(xué)習(xí)學(xué)到了很多知識,但是還沒有機會來運用和掌握這些東西。通過這次實踐,我對剪板機機械傳動系統(tǒng)的總體結(jié)構(gòu)、安裝工藝和機械設(shè)計過程都有了全面的了解,設(shè)計、計算和繪圖方面的能力都得到了全面的訓(xùn)練和提高,也使我對機械產(chǎn)生了更加濃厚的興趣,更堅定了我從事機械行業(yè)的信心。設(shè)計初期,我去圖書館的網(wǎng)站內(nèi)下載了許多相關(guān)的文獻資料,對剪板機機械傳動系統(tǒng)有所了解,然后開始準(zhǔn)備我的開題報告、任務(wù)書和文獻綜述。在總體結(jié)構(gòu)設(shè)計的過程中,我也遇到了很多困難,經(jīng)過多次的數(shù)據(jù)修改才把總體方案給確定下來,開始畫圖等工作。設(shè)計期間得到了我的指導(dǎo)老師的幫助,我覺得從與老師的溝通過程中,我能學(xué)到很多東西,老師可以從另外一個角度來啟發(fā)我,給了我很多幫助、鼓勵和指導(dǎo)。通過這段時間的設(shè)計,我已基本按照設(shè)計要求完成蘋果分級機機械系統(tǒng)的設(shè)計,但是由于本人知識水平有限,又沒有實際工作經(jīng)驗,本設(shè)計中定存在不足之處,敬請老師同學(xué)批評指正,提出寶貴意見,以便及時糾正。當(dāng)然,我知道整個畢業(yè)設(shè)計還沒有結(jié)束,因為還需要答辯,還要有答辯老師的提問與意見,我的畢業(yè)設(shè)計才能最終畫上句號。因此,我還需要繼續(xù)努力,認(rèn)真準(zhǔn)備答辯,仔細(xì)檢查我的論文,更好的完善,為我的大學(xué)畫上一個圓滿的句號。
參考文獻
[1] 黃繼昌,徐巧魚.實用機械機構(gòu)圖冊[J].北京:人民郵電出版社.1996:27-35
[2] 陳鐵鳴.新編機械設(shè)計課程設(shè)計圖冊[J].北京:高等教育出版社.2009:35-67
[3] 孫桓,陳作模.機械原理.第六版.北京:高等教育出版社,2001.
[4] 濮良貴