(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(十三)圓錐曲線的方程與性質(zhì) 理(重點生含解析).doc
《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(十三)圓錐曲線的方程與性質(zhì) 理(重點生含解析).doc》由會員分享,可在線閱讀,更多相關(guān)《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(十三)圓錐曲線的方程與性質(zhì) 理(重點生含解析).doc(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
專題跟蹤檢測(十三) 圓錐曲線的方程與性質(zhì) 一、全練保分考法——保大分 1.直線l經(jīng)過橢圓的一個頂點和一個焦點,若橢圓中心到l的距離為其短軸長的,則該橢圓的離心率為( ) A. B. C. D. 解析:選B 不妨設(shè)直線l經(jīng)過橢圓的一個頂點B(0,b)和一個焦點F(c,0),則直線l的方程為+=1,即bx+cy-bc=0.由題意知=2b,解得=,即e=.故選B. 2.(2019屆高三湖南長郡中學(xué)模擬)已知F為雙曲線C:-=1(a>0,b>0)的一個焦點,其關(guān)于雙曲線C的一條漸近線的對稱點在另一條漸近線上,則雙曲線C的離心率為( ) A. B. C.2 D. 解析:選C 依題意,設(shè)雙曲線的漸近線y=x的傾斜角為θ,則有3θ=π,θ=,=tan =,雙曲線C的離心率e= =2. 3.(2019屆高三南寧、柳州名校聯(lián)考)已知雙曲線-=1(b>0)的一個焦點與拋物線y2=8x的焦點重合,則該雙曲線的漸近線方程為( ) A.y=x B.y=x C.y=3x D.y=x 解析:選B 由題意知,拋物線的焦點是(2,0),即雙曲線-=1的一個焦點坐標(biāo)是(2,0),則c=2,且雙曲線的焦點在x軸上,所以3+b=22,即b=1,于是雙曲線的漸近線方程為y=x. 4.(2018昆明調(diào)研)過拋物線C:y2=2px(p>0)的焦點F且傾斜角為銳角的直線l與C交于A,B兩點,過線段AB的中點N且垂直于l的直線與C的準(zhǔn)線交于點M,若|MN|=|AB|,則l的傾斜角為( ) A.15 B.30 C.45 D.60 解析:選B 分別過A,B,N作拋物線的準(zhǔn)線的垂線,垂足分別為A′,B′,Q,由拋物線的定義知|AF|=|AA′|,|BF|=|BB′|,|NQ|=(|AA′|+|BB′|)=|AB|,因為|MN|=|AB|,所以|NQ|=|MN|,所以∠MNQ=60,即直線MN的傾斜角為120,又直線MN與直線l垂直且直線l的傾斜角為銳角,所以直線l的傾斜角為30. 5.(2018南昌模擬)已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點,P是它們的一個公共點,且∠F1PF2=,則橢圓和雙曲線的離心率乘積的最小值為( ) A. B. C.1 D. 解析:選B 如圖,設(shè)F1,F(xiàn)2分別是橢圓和雙曲線的左、右焦點,P是第一象限的點,橢圓的長半軸長為a1,雙曲線的實半軸長為a2,則根據(jù)橢圓及雙曲線的定義得|PF1|+|PF2|=2a1,|PF1|-|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1-a2.設(shè)|F1F2|=2c,又∠F1PF2=,則在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1-a2)2-2(a1+a2)(a1-a2)cos ,化簡得(2-)a+(2+)a=4c2,設(shè)橢圓的離心率為e1,雙曲線的離心率為e2,∴+=4, 又+≥2=, ∴≤4,即e1e2≥, ∴橢圓和雙曲線的離心率乘積的最小值為. 6.(2018長春質(zhì)檢)已知O為坐標(biāo)原點,設(shè)F1,F(xiàn)2分別是雙曲線x2-y2=1的左、右焦點,P為雙曲線上任意一點,過點F1作∠F1PF2的平分線的垂線,垂足為H,則|OH|=( ) A.1 B.2 C.4 D. 解析:選A 不妨設(shè)P在雙曲線的左支,如圖,延長F1H交PF2于點M,由于PH既是∠F1PF2的平分線又垂直于F1M,故△PF1M為等腰三角形,|PF1|=|PM|且H為F1M的中點,所以O(shè)H為△MF1F2的中位線,所以|OH|=|MF2|=(|PF2|-|PM|)=(|PF2|-|PF1|)=1. 7.已知橢圓E的中心在坐標(biāo)原點,離心率為,E的右焦點與拋物線C:y2=8x的焦點重合,A,B是C的準(zhǔn)線與E的兩個交點,則|AB|=________. 解析:拋物線C:y2=8x的焦點坐標(biāo)為(2,0),準(zhǔn)線方程為x=-2.從而橢圓E的半焦距c=2.可設(shè)橢圓E的方程為+=1(a>b>0),因為離心率e==,所以a=4,所以b2=a2-c2=12.由題意知|AB|==2=6. 答案:6 8.(2018南寧模擬)已知橢圓+=1(a>b>0)的一條弦所在的直線方程是x-y+5=0,弦的中點坐標(biāo)是M(-4,1),則橢圓的離心率是________. 解析:設(shè)直線x-y+5=0與橢圓+=1相交于A(x1,y1),B(x2,y2)兩點, 因為AB的中點M(-4,1), 所以x1+x2=-8,y1+y2=2. 易知直線AB的斜率k==1. 由兩式相減得, +=0, 所以=-,所以=, 于是橢圓的離心率e===. 答案: 9.(2019屆高三惠州調(diào)研)已知F1,F(xiàn)2是雙曲線-=1(a>0,b>0)的兩個焦點,過其中一個焦點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓內(nèi),則雙曲線離心率的取值范圍是________. 解析:如圖,不妨設(shè)F1(0,c),F(xiàn)2(0,-c),則過點F1與漸近線y=x平行的直線為y=x+c,聯(lián)立 解得即M.因為點M在以線段F1F2為直徑的圓x2+y2=c2內(nèi),故2+2- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 通用版2019版高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測十三圓錐曲線的方程與性質(zhì) 理重點生,含解析 通用版 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 專題 跟蹤 檢測 十三 圓錐曲線 方程 性質(zhì) 重點 解析
鏈接地址:http://www.szxfmmzy.com/p-6155572.html